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CIIAPTER 1: SPACE PROPULSION SYSTEIMS

1. 1 Rocket Propulsion Fundamentals

A rocket is a device which propels a vehicle by expelling mass. In

space, wherc aerodynamic forces are negligible and whcre solar radiation pressure

forces nre assumecd to be negligible, the equation of motion of a rocket powered

vehicle is given by Eq. (1. 1).

mr - mc + mg (1.

In this equation m is the mass of the vehicle, r is the position vector. c is the

exhaust velocity vector of the rocket, g is the gravitalional acceleration, and Ill

is the rate at which mass is expelled from the rocket. The rocket exhaust is

assumed to be uniform in direction and magnitude. This equation gives the proper

form of Newton's law for a variable mass body whose loss of mass is solely

through a uniform rocket exhaust stream. The thrust of the rocket is defined

by Eq. (1.2),

f mc, (1.2

and since the rate at which the vehicle loses mass is negative, the thrust will be

directed opposite to the exhaust velocity vector of the rocket.

For electrically propelled vehicles, a quantity of some importance is

hc power in the exhaust stream since this power must be supplied from a power



source. The exhaust stream power is given by Eq. (1.3) for a uniform exhaust

stream.

f f2
2 . f 

(1.3)2 21ii

Throughout this monograph, we shall be attempting to minimize the mass of fuel

consumed by the rocket. It is therefore important to have an expression for the

rate at which mass is lost. This expression is given in two alternate forms by

Eq. (1.4).

f f2 ( .* = . . . . ./ (1.4
c 2P

The rate of mass flow is proportional to the first power of thrust for a rocket

with constant uxhaust velocity and is proportional to the second power of thrust

for a rocket with constant power. It is inversely proportional to either nxhaust

velocity or power, hence it is desirable to have high exhaust velocity or high

power in rockets. Instead of exhaust velocity, rocket engineers normally speak

of a quantity called specific impulse which is most conveniently defined as the

exhaust speed divided by the standard acceleration of gravity, Eq. (1.5).

g0

Specific impulse is normally measured in units of seconds.

The variation of thrust with mass flow rate for the two types of rockets

is shown in Figure 1. 1. It should be noted that the curves cross at two points.

2



Ii.1 Variation of Thrust With

Mass Flow Rtate
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at the origin and at some finite thrust. Many rockets cannot be operated at

v'arious thrust levels but can be switched on and off. Such rockets may be con-

sidered as having either the same power or the same exhaust velocity at their

operating point and when they are switched off.

1.2 The Spectrum of Space Propulsion Systems

Any rocket engine may be characterized by two important quantities

which affect vchicle performance: the ratio of thrust to engine weight for the

rocket and the specific impulse of the rocket. The ratio of thrust to engine

weight is a measure of the mass of the engine required for aI given thrust level,

while the specific impulse gives a measure of the fuel required for various mis-

sions. The possible variations in these quantities for space propulsion systems

are surprisingly wide, falling basically into two different areas. A plot of the

ratio of the thrust to engine weight (at standard gravity) versus specific impulse

is Shown in Figure 1.2 for some of the more conventional types of rockets. All

the way up in the left-hand corner of the figure, there is a block representing

chemical rockets. Chemical rockets have large ratios of thrust to engine weight.

The engines weigh very little for the thrust they produce, but they also have rela-

tively low specific impulses. There are three major types of chemical rockets:

those using liquid propellants which are stored in a tank and burned in a rocket

engine, those which use solid propellants where the propellant tank is also the

thrust chamber of the engine, and those using both liquids and solids where the

4



F'ig. 1. 2 Space P~ropulsion E-Inginus

10

Cli ueniN11cicar
RoCI'i2t Rocket

10

10

10-1

Thru st
Engine W\t.

10-

-4-

10 21031C)405

Specific Impulse (Sec.)



solid propellant is again stored in the thrust chamber while the liquid propellant

is stored in a sepirate tank. Liquid propellints tend to offer higher performance

than solid propell'nts, having both higher specific impulses and generally lighter

overall system weight (including both tanks and engine). Solid propellants do

have advintages such as storability, density, and economy which make them

desirable for some missions. Hybrid rockets using both solids and liquids have

not been developed very extensively yet but do give promise of fairly high specific

impulses and may be promising for some missions. Only liluid rockets have been

shown in the figure as it does not include tankage weights.

Liquid rockets used today with hydrogen-oxygen propellants are pro-

ducing specific impulses of approximately 430 seconds and some more advanced

systems have been proposed which may produce specific impulses on the order

of 500 seconds. Ilowever, it does not seem likely that chemical rockets may

produce performance much in excess of this if stable chemica1l species are used.

Liquid and hybrid chemical rockets may be designed so that they can

be throttled. In this case, the engine can have any thrust varying from some

maximum thrust down to some fairly low value. This throttling takes place essen-

tially at constant specific impulse.

Because chemical rockets have relatively low specific impulse, a

number of higher specific impulse devices have been proposed and some are under

development. None of these, however, has yet reached the application stage for

primary propulsion. One such scheme is the solid-core nuclear rocket shown

6



by a block next to the chemical rocket. These roekets utilize hydrogen exh'usted

through a very high temperature nuclear reactor operating near the material

limits of gTaphite or tungsten and can produce specific impulses on the order of

800 seconds, about tiNwice that obtainable with chemical rockets. This large im-

provement in specific impulse is obtained at the expense of some increase in

both engine and tankage weights for this type of rocket, but they are advantagcous

for many missions and there is a current project to develop a solid-core nuclear

rocket. Like chemical rockets, nuclear rockets may be designed to be throttled

and may do this at essentially constant specific impulse.

Both chemical rockets and solid-core rockets are considered to be high-

thrust devices that can be used for taking off from the surface of planets. They

can provide high enough accelerations so that the rocket vehicle performance may

often be approximated by replacing the finite burning time of these rockets by an

impulse which requires zero time. Their primary limitation is exhaust velocity.

Because of their throttling characteristics, they will be referred to as constant-

exhaust-velocity rockets throughout this book,

Running along the bottom of Figure 1.2 is a class of electric propulsion

systems which operate at much higher specific impulses than the high-thrust

chemical and nuclear rocket systems, but also have orders of magnitude larger

engine weights for a given thrust. These devices can only be used in orbit.

Their thrust is very much smaller than local gravity for close planetary orbits

and their whole mode of operation in a space mission is quite different. In a

7.



chemical or nuclear rocket, the powered flight time is on the order of mi nueis

or hours whereas for an electric propulsion syste, the powered flight time is

on the order of months or years and generally constitutes the majority of the

total mission time. An electric propulsion system is a combination of a power

source and suitable power conditioning equipment with a thrust producing device

or thrustor. The same types of thrustors might be used with different typies of

power sources and vice versa. A great varicty of thrustors have been proposed

and some of these have been developed to an operational state. The only currently

operational thrustor types are resistojets which have relatively modest specific

impulses of up to 800 seconds. Another highly developed type of thrustor is the

ion rocket which operates efficiently at specific impulses above ;8000 seconds. A

number of other devices such as arcjcts, MPD arcs and various plasma devices

have been proposed and some of these are under development. Most of these

engines can be operated only at or near a design point and cannot vary thrust

effectively. It would be desirable to develop thrustors which could operate effi-

cienfly over a wide range of specific impulses at essentially constant power.

This can he approximated to some extent by carrying several thrustors on a

given power supply and switching from one to the other.

It will be noted that the thrust-to-weight ratio versus specific impulse

for these e',cctric propulsion devices is inversely proportional to the specific

impulse and this is a simple consequence of Eq. (1. 3) of the last section. The

weight of an electric propulsion system is primarily in the power supply and as



-

the specific impulse is raised, the thrust must be decreased In order to keep the

power constant. Most early studies of electric propulsion considered nuclear-

electric power supplies. These are devices which take thc heat from a nuclear

reactor and convert it in some fashion or another to electricity. At the moment

there is r.o active programn in this country to develop a nuclvar-electric power

. .. supply which would be suitable for electric propulsion and attention has switched

to solar-electric propulsion systems. There are many possible ways of converting j

solar energy into electricity, but the most widely used and the most successful

ct these has been the photovoltaic cell. Unlike the nuclear-electric systems, the

power of t solar cell system is a function of distance from the sun. In addition,

the suoar cell array must be in full sunlight and properly oriunted towards the sun

in, order to develop full power. The power developed is not an inverse square

function of distance from the sun because as the temperature of the cells changes,

their efficiency varies. A typical curve for power as a function of distance from

-the sun is given in Figure 1.3.

A great variety of other propulsion devices has been proposed. Among

these are solar heated rockets, radioisotope rockets, liquid core nuclear rockets,

gaseous core nuclear rockets, nuclear pulse rockets and solar sails. With the

exception of the last device, these are all rockets and may be treated hy the methods

to be developed in this book. The solar sail is a somewhat academic system which

is easily treatea by the general principles to be illustrated in this monograph.

9



Fig. 1. 3 Solar Cell Power Variation
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1.3 rayoff Functio, s

The payoff, the thing that we shall be trying to mnimize, is the totnl

fuel used and is given by integrating Eq. (1.4) to give Eq. (1.6).

!  t1
0 1 t,-(1.6)

m -ni I f -dt I f 2 dt
C 0 2P0

Two forms of this equation are given: one applicable to systems with constant

exhaust velucity and one applicable to the power-limited electric propulsion

systems. For sorne purposes it is convenient to use alternate forms for these

payoff functions, particularly for the idealized cases where the engines will have

variable thrust. lf we have a constant exhaust velocity system, Eq. (1.1) may be

integrated by dividing through by the mass to form Eq. (1.7).

0 t
fc tn = [ -dt AV (1.7)1 -m

nm 0

The logarithm of the mass ratio of the system, a monotonic function of the fuel

used, is proportional to the time integral of the thrust acceleration of the vehicle.

This quantity is spoken of as characteristic speed, or velocity increment, or by a

great variety of other names and will be used frequently. It is possible to use

this payoff function instead of the fuel used as it is a monotonic function of the

fuel used. The characteristic speed may be interpreted physically as the change

in velocity tlat would be produced by thrusting in a single direction in the absence

of a gravity field. Without gravity, the change in speed would be independent of

11



the acceleration program. Alternately, the characteristic speed may be looked

upon as the sum ol the absolute magnitude of the velocity increments that would

be produced by impulsive thrusting in a gravity field.

It should be noted that the characteristic speed can be made much larger

that, the exhaust velocity. It the final mass could approach zero, the character-

istic speed would approach infinity.

For a power-limited system, the corresponding quantity is found by

dividing -q. (1.4) ihrough by the square of the mass to produce Eq. (1.8).

1=

0 0 t 1  0 2
P1P ff-l- - = - - ' dt (1.8)

This integral has never acquired a popular name and is generally known as J.

The important thing he-'e is that another monotonic function of the mass of the

vehicle is proportional to the square of the thrust accter'ition so that for a

power-limited 'chicle it is desirable to minimize the time integral 0f the square

of ihe acceleration, whereas for a constant exhaust velocity systern, it is desir-

able to minimize the time integral of the acceleration itself.

It was mentioned in the first section that a rocket that can be switched

on and off and has only one operating point can be regarded as either a constant

power or a constant exhaust velocity rocket. Either type of payoff may be used

for such a ro -ket. In fact, in this case there is the following simple relation

between the two payoff variables.

12
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I0
p -6 c -i] (1.9)

1.4 Mass Relati~os for LSN'aust-i('locitV-I.ilited S'slems

The total mass of the space vehicle is assumed to consist of foiir types

of mass! payload, powerplant, structure and ful (or propellant)

I + m nS + inF  (1. lOj

The poworplant mass and part of the structure mass is assumed to be proportional

to the maximum engine thrust.

rnp +1Sp = k1 fmax (1.11)

The remainder of the structure mass is assumed to be proportional to the mass

of propellant.

mSF = k m F  (1. 12)

The ratio of the payload mass to the initial mass is then given by Eq. (1. 13).

mL f m F

-k1 - k -(1 + k2) (1.13)

13
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By using Eq. (1. 7) vf the last section, Eq. (1. 13) may be put into the desired form,

Eq. (1.14),.

m L -tV/c f
"-_ (1+ k) e -. (k 1 --- +k2)(.4

m m

Thi3 equation presents the relauonship between Ilie payload thal can Ie carried

and the payoff variable, characteristic speed, for a singlc-stage rocket.

- jLquation (1. 14) is plotted in Fig. 1.4 for several values of the tankage factor, k
2

Typical values of 12 would he about . 05 for t.ypicil propellants of about the densit y

of water and about 0. 1 for hydrogen.

1. 5 Mass flelatiois for Powcr-L,inited Ssic.rn.

'1 he constituent masses of a power-limited rockct are assumed to be the

same as thosc of an exhaust-vclocity-imitd rocket and arc again given by Eq. (,I. 10(.

As before, the powerplant mn;ss and the structure required to support the Fpc-wer-

plant are assumed to ,axy in the same way. In this cas,, they arc assumited to le

proportional to the power ini the exhaust ba,;- of the rocket.

nip = aP 0  (1. 15j

By combining Eq. (1.18) and (1. 5), the follhwig iec e l onship "or the mass of tle

vehicle is obtained.

]34



Fig. 1.4 Single Stage Payload
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given value for exhaust beam power and powerplant mass. In this latter case,

and only in this latter case, it is possible to optimize the mass distribution in

the stage independently of the trajectory.

For the idealized power-limited rocket, having fully variable thrust,

the value of J in Eq. (!. 17) will depend only upon the particular mission and will

be independent of the vehicle design, If the relationship between powerplant mass

and exhaust-beam power is given by Eq. (1. 15), Eq. (1. 17) may then be optimized

with respect to the powerplant mass. This may be done by simply differentiating

Eq. (1. 17) with respect to powerplant mass and setting the results equal to zero.

The optimum mass distribution for a given value of the payoff, J, is then given

by Eqs. (1. 19) to (1.21).

m

-14- 2 ) -- -1.19)

0 2
m

0 1+k 
(12O

m 2

= 1-2 (1+k 2 ) aJ + aJ (1.21)0 -2
m

17



1. 6 Control Variables and Parameters

A control variable is a variable which may be manipulatcd so as to

control the trajectory. This may be expressed syinbolically as Eq. (1.22).

dx
dj" = f (x, u. t) (1.22)

In this equation, the rate of change of the state vector, x, is a function of the

state vector, x, the control vector, u, and the time, t. This equation represents

a fairly general control problem and includes Eq. (1. 1) as a special case. For a

vehicle, the control vector. u, is used to control the acceleration of the vchicle.

Examples of control variables are throttle settings, thrust magnitudes, and thrust

directions. The number of control variables may be greater or smaller than the ...

dimensions of the acceleration vector. An example of the former is where there

may be multiple engines, each with its own control variables, An example of the

latter is a rocket which is controlled in three dimensions by a constant magnitude

thrust at right angles to the radius vector. Only one control variable, a gimbal

angle, can control all six components of position and velocity in an inverse square

field.

Where the number of control variables is greater than the dimension of

the acceleration vector, it will generally be possible to reduce the number of con-

trol variables by carrying out a partial optimization. This partial optimization

will maximize the acceleration for a given rate of fuel consumption or, equivalently,

18
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1 1 
"m = (1.16)

mm 1
mp

The fuel mass and the payload mass are then given by Eqs. (1. 17) and (1. 18).

0
m F  m p

0 I0

In

rL I+k2 mP

= o (1. l&)... .m . 1 + _ .M~ (y. . . .. .. .j m...=

mP

These equations are perfectly general and apply to rockets with either fixed or

variable thrust, Equation (1. 17) shows that, for a power-limited rocket, the fuel

consumption depends upon the mass of the powerplant. It is possible for such

rockets to decrease fuel mass by increasing powerplant mass. In general, there

will bc some optimum tradeof between powerplant and fuel mass which will maxi-

mize payload for a given mission. For a fixed thrust rocket, it is necessary to

carry out the optimization of the v'ehicle design and the trajectory design simul-

taneously. In this case, the value of J will depend upon the maximum acceleration

available which %%ill depend upon the powerplant mass. However, for a variable

thrust rocket, it is possible to follow any required acceleration program with any ]

16
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minimize the rate of fuel consumption for a given level of acceleration. An in-

structive example of this partial optimization is where a power-limited rocket

and an exhaust-velocity-limited rocket are used in parallel. The total mass

flow rate will be the mass flow rate of the two rockets.

f, f22 2 u22

m + a +2 (1.23)
c1 212 c1 2P 2

. he control variables will be taken as the magnitude of the thrust. The thrust of

each engine will be assumed to be variable from zero up to some maximum value.
I-l

-< u f (1.24)
1 max

Os5u ~f (.
2 2 max (1.25)

f2max >P2/c1 (1.26)

The total thrust will he the sum of the thru-Is of the indi-idual engines.

f = fl +f 2 = u1 +u 2  (1.27)

This equation may be used to eliminate one of the control variables and to express

total mass flow rate in terms of the total thrust and the other control variable,

f-u u 2
--. = 2- 2 (1.28)

2P2

19
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The mass flow rate as a function of u has a single naxin-im which is easily found
2

to be given by Eq. (1.29),

p* P2 "
u - " (1,29)

2 c 2

The exhaust velocity at this optimunm operating point of the powcr-limited-rocket

is exactly twice the exhaust velocity of the exhaust-vclocitv-liricd rocket.

2P 2c = = 2 C(1.30)f2 - .. . . . .. .. . - - -

2 f I2

With this relationship, it can be seen that there are three different regimes of

operation for the two engines in parallel (see Fi-. 1.5), In Ih first ogii- for -- - -

small thrusts. only the power-limited rocket is utilized.

2. f2  "" . :
02 -1 -- (1.,]. 3 .1 i
f 2 P

In the second regime. for intermediate thrust levcls, the pover-.limited rockc), is

used at this optimum operating point and the ti-rust of tie ehust-veocit,-linit-

rocket increases from zero to its maximum value.

P P P

2 f 2 - f 2 32)
S  c 1  1max C1  2c12

In the third regime, the exhaust-velocity-limiled rocket has reached its maximum

value of thrust and the thrust of the power-limited rocket is increased to meet the

total required thrust.

20
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IFig. 1. 5 Variatio-i of Thr';.st With--

(Combination Plropulsion)
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p2 f (ff I m 2ax
-f+ f f f f -max (1.33)

c1  1 max Imax 2 ax c1  2P 2

The first and third regions are examples of regions in which the maximum occurs

at a boundary of one of the control variables, in this case, the thrust of the

exhaust-velocity-limited rocket. In region two, we have a stationary maximum

for the second control variable, the thrust of the power-limited rocket. --.

There are many possible formulations for the control variables for a

given rocket propulsion system. As further examples of such tormulations, some

of the propulsion systems of Section 1.2 will be considered. In general, it will be

assumed that the engines are girnbaled so that the thrust may he pointed freely in

any direction. The control vector will be taken to be the thrust vector of the vehicle.

f u (1.34)

Then the mass flow rate may be taken to be a function of position. time, and tihe

magnitude of the thrust.

in = rfi (r,t,u) (.35)

For a chemical or nuclear rocket, the mass flow rate will be given by Eq. (1.36).

while the control variable will have a bound on its absolute magnitude. _ .

h=
- (1.361

C

max

22



If the nuclear rocket derives its source of heat from isotope decay rather than

fic-m a reactor, the decay of the isotope will produce a continuing decrease in

the amount of power available, so that the maximum value of thrust will be given

by Eq. (1.38).

f max fO e-k(t-t 0) (1.3)

For an idealized nuclear-electric rocket, the mass flow rate will be

given by Eq. (1.39).

m = - 2P (1.39)

In this case, it will usually not be necessary to set an upper bound upon the magni-

tude of the thrust as large thrusts will be undesirable because of their exorbitant

fuel consumption.

cc (1.4o,)

If the rocket is a solar-electric rocket rather than a nuclear-electric rocket. the

available power will be a function of distance from the sun.

P P(r) (1.41)

For practical engines, where the engine may only operate at a single design point,

the magnitude of the control vector may only have cwo discreet values. In this

case. the equations for the mass flow rate will be the same for a chemical rocket,

23



a nuclear rocket or a nuclear-clectric rocket. I
h, -~ (1.42)

C

=  .f
max

A somewhat idealized version of a practical solar-clectric rocket may be repre-

sented by Eqs. (1.44) and (1.45).

- u(1.44)
C

U (1.45)
C

In this case, the rocket is assumed to be capable of using all the available power

at constant exhaust velocity.

In addition to control variables, the problem may also contain a fixed

vector of conlrol parameters which do not change their values with time. The

control problem is then represented by Eq. (1.46), where t. is the vector of

control parameters.

dt
- (dt ~ t (1.46)

This problem arises when we wish to consider the optimization of the vehicle and

trajectory for a given space mission, such ns the determination of the maximum

payload which can be carried by a fixed-thrust nuclear-electric rocket oo a given

mission. In this case the powcrplant size, which will determine the value of the

24



fixed-thrust level, would be ove of the parameters of the problem. In the snme

example. the3 exhaUSt Velocity of the rocket might be another parameter to be

optimized.

25



CHAPTER 2: THE MAXIMUM PRINCIPLE

2. 1 Extrema of Functions

The problem of maximizing or minimizing a function is basic to all

problems in space trajectory optimization. The word "extremum" is used to

indicate a maximum or a minimum without specifying one or the other. The

problem to be considered in this section is to maximize a scalar function y of

a control vector u.

Y = f(wj (2.1)

The control vector u is assumed to be contained in a closed domain U. If y

is a continuous function of u, then the theorem of Wcierstrass guarantees that

the function y always contains both a maximum and a minimum.

"Every function which is continuous in-a closed domain, U,

of the variables possesses a largest and a smallest value

in the interior or on the bwundary of the domain."

If the function is differentiable and the maximum or minimum occurs

at an interior point, then the partial derivatives of y with respect to each corn-.

ponent of u must vanish. Such a point where the gradient of y vanishes is

spoken of as a stat'ionary point. While an interior maximum or minimum of a

differentiable function must occur at a stationary point, a stationary point need

not yield an extremum. For example, the stationary point may correspond to a
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saddle point where both greater and smaller values of the function occur in the

near vicinity of the point. A one-dimensional example of a saddle point would be

a point of inflection where the first and second derivatives of y with respect to

a scalar u would vanish. If y possesses second partial derivatives, then the

second partial derivative matrix would be indefinite for a saddle point, positive

definite for a minimum, and negative definite for a maximum. In general, these

extrema would only be local extrema; that is, extrema within some subdomain of

U rather than with respect to all of U.

The extrema of the function y may also occur on the boundary of U

or at "corners" where y does not possess partial derivatives with respect to u.

The theorem of Weierstrass also applies to the boundary of U, which is a lower

dimensional subdomain of U. For example, if the domain U is a 3-dimensional

polyhedron. stationary extrema must be sought within the interior of U, on the

faces of the polyhedron, and on the edges of the polyhedron. In order to deter-

mine the absolute extrema of y in such a domain (if y has continuous first

partial derivatives), all of these stationary extrema must be considered and

compared with the values of y at the vertices of the polyhedron. If y is a

linear function of U, there will generally be no stationary extrerna and the ex-

trema must occur at the vertices of the n-dimensional polyhedron. This is the

basis of linear programming.
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2.2 The Optimal Control Problem

An ii.iportant class of optimal control problems is to maximize the

final value of the payoff variable x0 subject to the differential Eqs, (2.3) with

the control vector u contained in some closed domain U.

= min. (2.2)

dx -
= f(x, u,t) (2.3)

The initial and final times are specified as are the initial and final values of the

state x. This problem is a generalization of the elementary problem considered

in the previous sectiuo. The cost, or payoff, x 1 epends on the complete time

history of the values of the control vector u, rather than upon its value at any

one time. The payoff variable is what is called a functional as it depends upon

a continuous sequence of values of the vector u.

This problem is much more difficult than the elementary problem con-

sidered in Section 2. 1 and far less is known about its solution. There is no general

existence theorem corresponding to the theorem of Weierstrass and the sufficiency

theorems that have been developed are generailly difficult to use and are of limited

applicability. There is a satisfactory theory concerning necessary conditions for

this problem and this theory is the basis of the analysis in this monograph.
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2. 3 The Maxinum Principle

The maximum principle is a necessary condition for a maximizing

solution of the optimal control problem considered in the previous section. AIy

1
solution which does maximize the payoff x must satisfy the maximum principle.

-Hlowever, solutions which satisfy the maximum principle may not be maximizing.

A solution which does satisfy the maximum principle will be referred to as an

- - extremal. --

The maximum principle is stated in terms of a Hamiltonian defined by

Eq. (2.4).

H = U(, X, u, t) - , f(x, u, t) (2.4)

The vector , is a vector of Lagrange multipliers of the same dimension as the

state vector x. There is one component of this vector for each component of the

state vector. The differential equations of motion and the differential cquations

governing the Lagrange multipliers arc given by the canonical E'qs. (2.5) and (2. 6).

dy..
d--2 = ), i = 0, 1,. .. n (2. 5)
dt ax.1

dX. )I 51t 1 0, 1 ..... n (2.6)
dt bx.I

These equations are often stated in the equivalent vector form (2,7) and (2. 8).
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dt ~X (2. 7)

= - - (2.8
dt ... 8

The maximum principlc of Pontryagin states that the Ham iltonian H of

Eq. (2.4) must bc maximized with respect to the value of the control vector

0 1
container] within the closed domain U at all times from t to t .The maximum

principle reduces the optimal control problem to an infinite sequence of maximiza-- _

tion prob~lemns in Euclidean space and to a 2-point boundary value problem. The

maximization problem is the problem of maximizing 11 with respect to uat each

time. The 2-point boundarY valuc problem is the problem of determining' the initial

values of the Lagrange multipliers X.that will cause the extremial to go to the - -

correct finial state.

Equations (2. GI are a set of linear homogeneous equations in the Lagrange

multipliers X.. These equations arc odjoint to the lincarizcd variational equations

of Eqs, (2. 5). A natural scaling of this hoiogeneous sy stcm o, equations WiI 1 be

chosen b)\ taking the terminal v-alue of the Lagrange multiplier associated with the

cost to be unit\? (Eq. (2. 9) )

X0 ~ (2.9)

Because the Lagrange multipliers are adjoints to the linearized equations of motion.

and because of the scaling uscul in Eq. (2.9), they may 1)e interpreted as influence

functions for the cost and obc) the rela~ionship of Eq. (2. 10) at .all times.
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F1

t = 1 0, 1 . n (2.10)
i

The Hamiltonian itself is the negative of the influence function for time and obeys

Eq. (2.11).

1
a xo
Bt (2. 11)

The system of equations of Eqs. (2. 5) and (2. 6) also possesses a first integral

which gives the value of the Iamiltonian at all times (Eq. (2. 12)).

1
t

1
H(t) = H1  r -" dt (2.12)

j t

If the system is autonomous, i.e., the functions f. are independent of time, then

this integral will be a constant of the motion.

If all the maxima of H with respect to u are stationary maxima, then

the optimal control problem is reduced to a problem in the classical calculus of

variations. This classical theory possesses a more satisfactory and useful theory

of sufficiency conditions than has yet been developed for the more complex optimal

control problem.

2.4 Control Parameters and Free Boundary Conditions

The problem considered in Section 2.3 may be generalized somewhat by

assuming that the boundary conditions are not fixed but may vary over some ter-

minal hypersurface. This problem may also be generalized by assuming that T
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may depend upon a constant vector of control parameters .. This makes the

H-amiltonian a function of four vectors and time.

H = X-, 6, Z, t) = H J, X_, u, Z, t) (2.13)

For any given set of values for the control vector Z, thc cost may be computed by

solving a standard optimal control problem. The cost may then be represented as

a function of the boundary conditions and the parameter vector, Eq. (2. 14).

1 1 -0 -1 0 1-(.4
X -x X X tt(.4

0 0 (xxtt~

The problemn of determining the optimal v'alues for the boundary conditions and

-the parameter vector has now been reduced to a~ problem in the theory of extrenm

of functions. If the cost given in Eq. (2. 14) is differenti able, then a set of trans-

versalitY conditions may be derived which determine the optimal values for thle

boundary conditions. For example, if the initial conditions are fixed and the ter'-

minal conditions are variablc, then the variation in cost due to variations in the

termiin.,l conditions mnust be stationary and will be given by Eq. (2. 15).

n
1 i1 1 1 1
8X i6 =+1 0 (2.15)

This equation must be satisfied for all variations which are consistent with the

terminal conditions, For example, if one component of the terminni state is un-

specified, then by Eq. (2. 15) the corresponding component of the Lagrange
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multiplier must be zero. If the initial or final time is unspecified, then the

Htamiltonian II must be zero at that time. More generally, if the terminal

state must lie on some hypersurface in the space of the state variables, then

the terminal Lagrange multiplier vector must be normal to the hypersurface.

Equation (2. 15) may also be used where the terminal hypersurface is a specified

-- function of time and the state.

1
If the payoff x0 is differentiable with respect to the parameter vector

t.. then the following conditions must hold with respect to each component t' of

the paranmeter vector.

t

This condition may be derived by considering each component of the parameter

vector as a new state variable whose derivative is equal to zero.

2. 5 Singular Arcs

The maximum principle determines the optimal controi only if the

lamiltonian H has a unique maximum value with respect to the control vector u.

When 11 has two or more equal maxima, the problem becomes more complicated.

One importont case arises when H is linear in one or more components of u.

If the coefficient of the linear term is nonzero, the maximum of t will occur

at the boundary of u, 11owever, if the coefficient is zero, then all values of that

componunt of u yieln the same value of It and the maximum principle does not
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determine the control. This is the caie n which singular arcs may arise. A

singular arc is a segment of an optimal trajectory of finite duration where the

control does not lie on the boundary and the coefficient of the linear term in the

Hamiltonian is identically zero over the finite time interval.

If the problem is linear in the state znd control, then the singular arc

will arise when the solution is non-unique and may be replaced by non-singular

arcs luving the same cost. Htowever, if the problem is nonlinear in the state

x but linear in one component of the control u, then sintgnlar arcs may repre-

sent all or part of a unique minimizing solution.

In practice it may not be possible to operate a control between its maxi-

mum and minimum limits, llowcver, an approximation to such intermediate con-

trols may be obtained by operating the control alternately at its maximum and

minimum values. If this is done rapidly, a chattering approximation to the inter-

mediate control is obtained, Anytime that a Hamiltonian possesses two equal

maxima. chattering may be used to connect the two maxima and the possibility

of a singular arc arises.

2.6 Impulsive Controls

If the lamiltonian is linear in a componentc f u and this component

of u is unbounded, then a posilive coefficient for this component in the Ilamil-

tonian implies that the control should be infinite. The usual derivations of the

maximum principle do not hold for this case. lHowever, the scope of the maximumj
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principle has been extended so that this important case may he treated. 'rhe

details of the results will be presented in the next chapter for the rocket problem.

2.7 Sufficiency

The maximum principle is merely a necessary condition for an extremum

and its satisfaction is no guarantee that the solution to a particular problem has been

found. In special cases it may be possible to establish that there is a unique solu-

tion that satisfies the maximum principle. In these cases the maximum principle

will be sufficient for an extremum. However, in general, it is not possible to show

that the problem possesses a unique solution. In fact, it is often impossible to

show that the problem possesses any well-behaved solution.

The only way by which one can determine absolute extrema is bY, calcu-

lating all extremals and comparing their costs. There are a few techniques which

can sometimes be used to determine local extrema. If the control never lies on

a boundary, then the problem may be treated by the classical calculus of "'aria-

tions which possesses a local sufficiency theory based on the second variation.

This theory is a gener:dization of the local sufficiency theory for the extrema of

functions. If the controls do lie on the boundary for part of the solution, a more

general approach must be used. Such an approach :, reccntl been developed

by Boltyvanski for determining absolute extrema vithin a gi..en domain. Unfor-

tunately, this theory requires the generation of th., complett families of extremals

in this domain. This is usually impractical if the staik, vvetor x has more than

two components in addition to the payoff.
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CH1APTE1 3: GENERAL THEORY OF OPTIMUM

ROCKET TRAJECTORIES

3.1 Application of the Maxlnm Prin cilc

The equations of motion of a rocket moving In an arbitrary time-

varying gravitational field are given by Eq. (1. 1) of Chapter 1. This equation

will be re-written as two first-order equations, Eq. (3. 1) and (3.2), so that

they will be the first-order form to which the maximum principle is applicable.

.. f
V =- + g(r,t) " (3.1)

r - V (3.2)

The. rate (f loss of mass of the rocket is assumed to bc general function of

position, time. and the thrust \ ector.

ih - n (r, t~f) (3.3) -

This system of vector and scalar equations are the slwte equations for a general

rocket traject ory optimization problem. They will form a fifth-order system for

planar flight in two spatial dimensions and a svre, tb-order slystem for flight in

three spatial dimensions.

The Hiamiltonian of this system is given by Eq. (3,4). This Iamiltonian

represents a 'Mayer formulation of the blptimizaiioa problem. The veotor X is
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ndili to 111C xel oe it), wvor, the vector ju is naljoint to the position vect or, mid

thc scAar a~ is ndjoint to fthu scalar mass of the r-ocket.

H = + X' m + orl (4

- Ii ll(~r~n, X ~.a, ~t)(3. 5)

The Hlamiltonian 11 is a function of the state variables. the ndjoirit variablies. the

control vec'tor, anid the time. The differential equations for the adjoint variables

n'e-given-hy E-qs.- (.3. G), (3. 7) and (3. b).

- All

X~ 3- -( 6)

(3.7)

* ~ lIr

cr (3. 8)61) 2

Because ot the simplE, relationship between the adjoint vectors for position and

velocity. EqIs. (3. ) and (3. 7) arc often written in the second-order form given

by Eq. (3. 9).

(3.9)
or

'Ihle adjoinlt Njecotr X pla'vs an important part in the theorY of optimum spicc

trajctories and is often, called the primeir vector, a namec originally intr(duced

by L'aivIi.
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The maximum principle states that the Hamiltonian, Eq. (3.4), should

be maximized with respect to the control vector, in this case the thrust vector.

Only two of the terms in the lIamiltonian are affected by the thrust so that the

maximum principle reduces to the maximization of these two terms (Eq. (3. 10)).

-- + riI = max (3.10)

Equation (3. 10) is a general equation applying to a great many types of

rocket propulsion devices. Among those types are those where the thrust magni-

tude must lie within a given time-varying set, and to the case where the thrust

magnitude is a fixed function of time, but the dir,ction may be freely varied.

The one important case not covered by Eq. (3. 10) is where the maximum thrust

magnitude is a function of both position and time. This case can be conveniently

handled by expressing the thrust as the product of a throttle variable k, which

may vary from zero to one, and the maximum thrust of the rocket,

= kf (r,t) (3.11)
max

As the thrust is now a function of the position vector r, the equation for the

primer vector, Eq. (3.9), must be modified as Eq. (3. 12).

III max
') A (3. 12)
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At this point it will bc assumed that the engine may be rotated freely

in space so that the maximum thrust is not a function of direction and so that

the fuel flow rate depends only upon the magnitude of the thrust. In this case,

Eq. (3. 10) implies that the thrust should be aligned with the primer vector to

produce Eq. (3.13).

_f + a ii= max (3.13)

This equation may now be used to maximize the Iamiltonian I with respect to

thrust magnitude as well as thrust direction. It is convenient to re-write Eq. (3. 13)

as Eq. (3. 14).

f - il - max (3.14)

There are two impor, nt cases that arise depending upon the curvature of the curve

of thrust versus fuel flow rate. The two cases are illustrated in Figs. 3. 1 and 3.2.

f + 'llh c1  ...

f f-

Fig. 3.1 Fig. 3.2

39



In the first case ilhistrated] in Fig. 3. 1 the maximization of 11 will generally

lead to a statioaa'ry miaxinwin point away from the boundaries on the thrust.

This case is characteristic of the idealized power-limifted rocket. The second

case illustrated in Fig. 3. 2 always has a maxima of the Hiamiltonian occurring

at the maximum and minimumi values of the thrust. The thrust is never operated

at intermediate values exnept in the particular case where the thrust is a linear

function of the mass flow rate. It ia possible to approximate to a linear relation-

ship between thrust and mass flow rate for these engin~es by operating the eligint

alternately for short periods of time at both maxinium and minimumi thrust, a

process known aschattcring. if Lhe optimal trajector'y coaitains a singular arc,

such chatterinig behavior will fwrm panrt of the optimal solution.

3.2 (insmit F%1:haust VLct

In the particular catse of a ruch(t N."th a coist 1U.S utehut Clocity, I he

inass flIow r:itc- is given by Li., (3. 15), where, c is ai constant. Ecpwatioui (3. 1 J) is

then replaccd bjY Eq. (3. IG).

f
m - (315)

C

ithis Case C. ritcria for VIC miagoituCQ of thc thrust aire given by E.qs. (3. 17).
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x>C max

X < f f (3. 17)

anif f!;f
C min max

If the magnitude of the primer vector is greater than or rn/c, the thrust is turned

---on full throttle. If the magnitude of the primer vector is less than or rn/c, the. -- -

enginc wvill operate at its minimum thrust level, which will be takcn to bc zero.

-Finally, in the particular case of a singular arc the magnitudc of the primler vector

wvill remiain equal to a ni/c along the arc, and thc value of the thrust will lie be-

tween its limits.

3.3 lm])ulsiive Controls

It is interesling to determnine what happens to EqIs. (3. 17) if inipulses

are allowed. Using the results of Chapter 1, Eq. (1. 7), ]Eq. (3. 4) may be re-

,written as Eq. (3.

H - .- *)+ Xg - p (.ni

The rate of change of thle quantity ar in may be determined fromn Eq. (3. 19).
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d(am) madm _ (3.1a)
dAV f'''' - am 3.9-cIt - dt C

rn m

When X is less than om/c, the thrust will be zero and the rate of

change of AV will be zero so that there will be no changc in the quantity am.

When A is equal to Crm/c, the rate of change of oim with respect to AV,

given by Eq. (3.19), will be zero. During an impulsive thrust, the value of the

primer vector and its first two time derivatives will not change. As a result. the

right-hand side of Eq. (3. 19) will remain equal to zero during an impulsive thrust

and along a singular arc. This means that as long as the value of thrust is allowed

to vary between zero and infinity, the quantity a "n/c will be a constant of the

motion, which may be taken as unity.

The magnitude of the primer vector must be less than unity when the

rocket is turned oif and must be equal to unity when the vehicle is powered. It

can never be greater than unity for an optimum trajectory. Since the primer

vector and its first two time derivatives are continuous, all impulses between

the initial and final times must occur at local maxima of the primer vector. In

this case the primer vector and its derivative will be orthogonal and the last term

in 1"(q. (3. 18) will not change across the impulse. The first term will be zero on

both sides of an interior impulse and may be defined to be zero during such an

impulse. As a result the lamiltonian for the constant cxhaust velocity problem

with unconstrained thrust may be taken as in Eq. (3. 20).
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V (3.20)

This equation will not apply during the terminal impulses where the Hamiltonian

will not be defined. It will apply in the open interval from the initial to the ter-

minal time.

3.4 Power-Limited Rocket

In the case of a power-limited rocket wvhere the power may be a fu-ction

of time and position, the mass flow rate will be given by Eq. (3.21). -

- _ (3.21)
- - 2Io -'-

2P

Equaion :.1-) in this case becomes Eq. (3.22).

2 2XP f2 ma 
(3.22.)

This equation is of the type illustrated in Fig. 3. 1 and always has the stationary

maximum given by Eq. (3.23).

k xP
a m (3. 23)

The equation for the Lagrange multiplier for the mass, Cy. is given by I,'P. (3.24)

and the equation for the rate of change of mass is given by 1'q. (3.25).
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3 (3.24)

arm

- 2 2(3.25)
2 a 2m2

T1hese equations niay be combined to yield Eq. (3.26), whichi is readily integrited

to yield Eq. (3.27).

2m (3.26)

am2 a 0 2 (3.27)

The acceleration of thia rocket is then given by Eq. (3. 28) and the Hamiltonian by

Eq. (3. 29).

f - (3.2&)

2 P - ~ 2 1Q*d3
H= 2 g2 (.9

As this is a homnogeneous system, we nijy set the Lagiangc multiplier ,7 equal

to the va.lue given by Eq. (3. 30) to pr(-iee the Ifa-iltmlian givcni by Eq. (3. 31).

0 p
17a (3.30)

H~ 2  P - - - - d(P 0  (3.31
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The quantity on the right may be recognized as equal to the quantities given by

Eq. (3.32). This produces the final form of the Iamiltonian II for the power-

limited problem, Eq. (3.33).

dP 0 /i 1 p 0 If \ J p (3.32)

dt dt 2 0
-P

2 P
= + - 0 + (3.33)

P
Ag-2 pO 2

It should be noted that in both cases where there are no bounds on the

--thrust, the mass has disappeared from the problem. This is because for these

probleim.l the thrust may be rcplaced by the thrust acceleration as a control vari-

---able. It should also be noted that E'cq. (3.33) applies to an :arbitrary time-varying

gravity field and to a power level that is an arbitrary function of time and position.

3.5 Summary of Rcsults

From this point on this monograph will be prim:rily concerned v it,) three

different trajectory optimization problems. I he first prot)lem, to be referreC to

as Problem C1, is oonccrned with mininmuni fuel trajectories for a constant ex-

haust velocity rocket Living a fixed bound on the ]naximum thrust level. In general,

the thrust level will he assumed to he ariable, but in the 31pccial case of minimumn

time trajectories the thrust will bc assumed to bc fixed at its maxinum value. In

such a ease the minimum fuel trjrectory is also a minimum time trajectory. The
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second problem, to be referred to as Problem C2, will be concerned with a con-

stant exhaust velocity rocket with no upper bound on the thrust magnitudc. Here

the solution will consist of impulses and coasting arcs except in the exceptional

case of singular arcs. The payoff to be maximized will be the negative of the

total velocity increment as the velocity increment should be minimized. For this

problem minimum time ftajectories nre meaningless as they require a consump-

tion of infinite amounts of fuel.

The third problcm, to be referred to as Problem P1, is the minimum

fuel problem for a constant power rocket with unbounded variable thrust. In

general, the power may be a function of position and time, although most results

will be for the constant power case. For this problem both minimum time and

time-open problems arc not of interest because they correspond respectively to

zero time, infinite fuel consumption and infinite time, zero fuel consumption

solutions. Table 3. 1 summarizes some of the pertinent characteristics of these

three problems.
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TABLE 3.1

Problem Cl C2 PI

Exhaust velocity - c constant constant variable

Maximum tru-st level - f bounded unbounded unbounded
max

Power level - P variable variable function of
position and time

1 1
Payoff - x1 m V-J

Terminal value of 2
adjoint to mass - c1 c/ 1

2

Htamiltonian- H X g- " V 'g- V 2

2 (X
m c
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3.6 11ondn r Co lditions

This section will consider wlt effect various typs of boundary con-

ditions have on the terminal values of the Lagrange mullipiers for the three

problems defined in the previous section. Thc.;v boundary conditions will be

determined from the gcneral transversality condition, Eq. (2. 15) of Ch:iptcr 2.

Applying this transvcrsality condition to the rocket trajectry- rI- dlms of this

chapter produces Eq. (3. 34). This equation nmust be stationary for allov.able

variations in the terminal conditions.

x0  --- - 6 r- 1,.t (3.3,1)

In the case of interception trajectorie;s the terminzil %Clocity at inter-

ception is unspecified. Equation (3. 34) then indicates tint :A interception all

three components of the primer vector must he zero (Eq. (3.35) .5

), -O (3. 3"i

For time fixed interccption this equation must he satisficc 1,I. ali tn cc problems

Cl, C2, and P1. hceause the primer vector is zro at the tiie of interception,

the thrust will he zero at that time in all cases. l'or tiwe open interception the

terminal position will be a specified function of time (Eq. (3. 36)).

rt ) M.34
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Thc valriation in position (l'dO to nvariation in intorecuption timc Nvill then be

given by Eq. (3.37).

6r = Vt64 3.7

The stationary condition of Eq. (3. 34) for this problcm is given by Eq. (3. 38).

6r=H 64 (3.38)

This equation yields a terminal value of the lamiltoniain for problcms Cl and C2

-where use has been made of the fact that the thrust is turned off at interception.

t

Equation (3.39) implies that thc derivative of the, prinmer vector must hne pcrpcn.-

dicular to the- relative veclocity vector at interception. In the special case whiere

the target is stationa ry tim- Ilamiltonirm must be 7ero at inte-rceptioni and the

dcrivativc of thc primer vctlor must be perpendicular to the velccit,, vector.

For minimumi time intercc ption only Problem Cl is of interest. Equritioii(.34

then yields Eq. (3,. 40), resulting in Eq"(s. (3.'11) and (3. 42).

0 :- (- )6t (3. 4 0)t C

V t
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The problem of time fixed rendezvonu; provides no freedom in the ter-

minal conditions so that no transversallty conditions may e inmposed. However,

there are several variable time rendezvous problems of interest. It will be

assumed that the target vchicle is falling frcee, under the action of gravity.

Its poition and velocity are given by Eqs. (. 43), while the variations in these

quantities are given by Eqs,. (3. 44).

S r= rt (t) N, V (t) 43)

) (3 .4 4)

Applying Eq. (3. 34) to this prob!emn- yield., Eq. (3.45).

0  g - V t 1- )6 t (3.45)

For th time open casc for Prohiem C1 1he statioiiary con'litiun of Eq. (3.15)

rest,lis in Eq. (3.46).

S II(3.(.c

This eqL;ation indicatcs that the_ thrust should cut off at the tine of rendezvous

and that a coistinog ire should begin at that t •n~t pph i j g Eq. (3. -15) tc, Problcm

C2 requires som( care because the 1Hamilt onian inzi not be C(efin d 't ,. term in l

im pulse. ilow ev\ep , ]:q. (3. 15) 1n1r, he used %vi ll th t: 'thU i.z' of lIh II inl' : ainn

ii n(diately prior It the i n'2 t i .- l{ , ]' i nag i.' (. (3. 17),
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tI

X (vt -) L- A\' 0 (3,,i7)

This equation may be replaca by Eq (3. 48) as .hc primer vector must point

In the direction of the tcrmnin'l impulse.

* ' , 0 (3.,i8)

This uqu:ition indicates that he primer vector mrgnitgAde .ust hoe a sttiowry

ia.fximunm at ihe ternminal time. This in.j'lies tut or this premi as well as

Prohicnr C1 a coasting arc must begin at the time of rendczvous.

The minimuin time rendezvous problem is only of interest for Problem Cl.

Applying Eq. (3.45) yields Eq. (3.49%,

11 m
X (3.40)

This equation is not v'ery useful as :31 it does is delermine a natural sealing for"

thc values of th1" primer v.ctr.

An interesting rendezvous problem occurs when he irtnsfer time fromn

one body in free fall to another bkiy in free fall is specified, but the time at which

the maneuver starts is not specified. This case is of interest for all three problems

C1, C2, and P1. Applying Eq. (3.45) to these problens yields, respectively, Eqs.

(3. 50), (3. 51), and (3. 52).
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ci £-( - y (3.50)

C2 -V0 -V1 (3.51)

P1 2I (3.52)

Many of the interesting problems in space trajectory optimization are

problems of orbit transfer. In ordecr to define such problems, it is usually neces-

sary to assume that thej gravitational field is only a function of position and not of

time. This assumption will lie made herc. Such an assumption will result in the

Hlamiltonian being constani for Problemns Cl., C2, and those examples of Problem P11.

w~here the power is independent of the time. The variations in position and velocity

on thc targut orbit will be given by Eqs. (3. 53), whcrc the variable T refers to a

fictitious motion on the target orbit and does not correspond to time on the actual

trajectory.

6 = V t 61- 6V =g 6 7 (3.53)

For time fixed orbit transfer for Problem C1, Eq. (3.34) yields Eq. (3. 54) which

will be truei at bo0th ends of the trajectory.

g- V 0 (3.5)
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Pecause '11c liamil onian v,' l by const. lt for 1L1is ro-lcrn, Eq. (3. 55) 1a :1iso

be obtained.

0 1l

f an: f 3,5\
II Ic I c (3.5

For Phroblcm C2 with time fLxed the variations in position iod velocity will bc

assumed to be given by l1 s. (3. 56).

6r (V i -)6r 6V 7gf (3. 5;

This results in Eqs. (3.57) nnd (3. 5).

6x 0  0 (, g - V • 7 X AV)-r (3. 5.i

0 1
I .

Foi Pt'ollem P!, Eq. (3. I-L) is agrin Obtained and if the lpover is 11ot :1 IUIICti(,Il

of time, Eq. (3. 59) may also be olhai:t'd.

01
)2 t 2 p t- - (3.59)2{ - 2 p 0

For time open orbit transfer for Problem Cl, Eq. (3.51) still holds

and, in addition, Eq. (3.60) holds. The Hamiltonian will be zero.
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m (3.60)
C

The terminal times for this time open problcm must represent the beginning of

coasting arcs.

For time open orbit transfer for Problem C2, Eq. (3.58) must hold.

However, in this case, because the time is not specified, the Tiamiltonian must

be zero. Therefore, Eq. (3. 61) must hold.

0. =  o (3.61)

Once again, as in Problem Cl, the terminal powered arc! must join onto coasting

arcs.

For minimum time orbit transfer in P'roblem Cl, Eq. (3.54.) must

hold and Eq. (3. 62) must hold.

Xl = m .. (3.6t2)
c

As for minimum time rendezvous, this provides a naturnl scaling for thb.. .agi~angc

multipliers.

Another interesting problem is the problem of reaching a given energy.

The energy in a time varying gravitational field may be represented as in Eq. (3.63)

where U is the time varying gravitational potential.

1 2 + U(,t) (3.63)



Ii

For the tirle fix\ed problhm tlhc allowable variations inV clocity and )osition must

satisfy 'q. (3. 6t).

t" g-  - '  :  0(3. )

The change in cost from Eq. (3. 3J) is given by Eq. (3. W,).

x . - r= 0 (3.65)

In order for both (3. (-) and (3. 65) to be satisfied, Eqs. (3. 6(i) must be satisfied.

V t V t

For all throe prc1!e:h il(, mn'.ity on the left-hand side of Eq. (3. 67) is equal

to the right-hand side.

- t  (3.67)
t

For both Problem C1 and Il1 the velocity is continuous so that both quantities

will bc equal to zero. l rcbL,, th c valuc of II will i;ot bc crn hut

will be given by the right-hand side of Eq. (3. 67). It should be noted that the

terminal impulse for Problem C2 will be in the direction of the velocity vector

so that V and V will he colinear.
t

To consider the problem of reaching a gixen energy with variahle

terminal time, it will be assumed that the gravitttional potential is not a function
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of time. For the time open problem, of reaching a given energy for Problem Cl,

thc transversality conditions will result in Eqs. (3. 66), (3. 67) and (3. 60). For

Problem C2 the corresponding equations will be (3. 66),, (3. 67) and (3. 61). This

implies that for this problem, Eq. (3. 68) Must be satisficd.

V g 0(3.66)

This equation has a simple, physical interpretation. Thc rate of- change of cncrgy

is proportional to velocity so that the terminal orbit must lbe entered atapon

where the velocity is a maximum. The stationary condition for this to be true

is given by Eq. (3. 6,S), which wvill be satisfied at an apse of the termninal orbit.

For mii~mum time transfer to a glvcii cncrgy level in Problemn C1, the% trans-

versalily conditions will result in Eqs. (3.66), (3.67) and (3. 62).
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CHIAPTER 41: TRAJ ECTORY OPTIMVIZATI~ON

IN FIELD-FREE SPACE

4. 1 Integration of the Adjoint Equations

If the miss flow ratc of the rocket is independent of position, then the

adjoint equations become uncoupled from the equations of motion for linearized

gravity fields. An important special case of such fields is field-free space far

from- any massive body.

In field-free spice the differential equation for the primer vector is

given by Eq. (4. 1)

(4.1)

This equation is readily integrated to yield Eq. (4.2),

X = +) (t- t )(4.2)

The tip Ai the primer vector moves along a straight line at constant velocity.

This line many be spoken of as the locus of the prim'er vector. The primer

vector :11ways lies in a plonne determnined by the origin and this locus. The

magnitude of the primer vector is given by Eq. (4.3).

I-__0 -+ 2 0 0 2tt0 . 2.0 (tt0 2(43
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"Ihlis equation represents a hlyperbola whichl is concave upward~s. iiecause or nho

shape of this Curve there Nv'ill be, at miost, one coasting arc for Problem C2 and

either oflC or two implse..;~. For Problem C2 there wvill be, at most, one coast-

ing arc with eitheri one or two thrusiing arcs. If the final position is open, the

dlerivativc of the primer vector will ])C identically zero mid the primcnr vector

w~ill 1)C consta~nt in magnitude. This will. be a singular case for Problems C1 and

C2, the thrust di rection will 1)e specified but the time of application and magni-

tilde (1, lle thrust will be Unspecified.

41.2 Con1stant. Exhaust VClOC-ity Propulsion with Unbounded Thrust M\agnituide

F.or interception the previous cehapter has shown that the primer vector

must lie zero at the terminaml time, Eq. (.1.4).

Ix 0 (4.4)

'The primer vector can only beconic zero if its rate of change is directed

antiparallel to it's initial direction.: This result implies that the direction of

thrust (luring interception must be constant. This' constant thrust direction for

interception is independent of any consideration of the type (if propulsion a~nd holds

for all propulsion systems in field-free space.

True magnitude of the primer vector must decrease linearly to zero

-it itnterception. There will he only one impulse represented by Eq. (4 . 5), which

may h)e rc-writtcn as (4.6().
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-1 -0
r t - r 0 (4.5)

1 0
t -t

The maignitude of tho re L uired velocity increment may be found by

taking the (lot prodci t of E..q. (4. 6) Nvith itself. The vol ocil v increment is a func-

tion of the initial relative position, the relative velocity, and thc total time

allowed. For givenl initial conditions there is an optimum timc for interception

Which minimizecs the %vclocity increment. rrl'tis optimumi- ti-me many be found by

detrmnig hestitonrvpoint of thc norm cEq. (4. 0). Carrying out this

computI i,,n yields the two minimizing roots given by Eq. (4. 7).

-0 -0 -0 -0
-Ir 1) (r t t 0 (4.7)

(r -r ( V -V

The left-hand root represents the optimum interception time when the vehicle is

approaching the target, while the right-hand root represents the optimum inter-

Ception time When ihle vehicle is receding from the target. The left-hand root

has an interesting physical interpretation as it is the negative of the range to the

target divided by the rate of change of range. The mninimum velocity increment

for these optimum times is given by Eq. (4. 8), the left-hand expression again

applying to vehicl(-.- approaching the target and the right-hand expression for

Vehicles receding fromr the tWirgeI.
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(Vt -V ) 0 -0)! -
-0 -0 0 -.00 V 0 (1)

10 ' t

Th'l( left-hand term in Eq. 4.8 is equal to the magnitude of the relative

Velocity mu11Itiplied by t1C since of the nnglo between the relative velocity vector

and the lilne-of-sigh1-t to !he tmrget. It applics only wvhen the vechicle is approachiig

the target. Whenl thu vehlicle is; receding from the target, the optimum maneuver

is t,', stop thec relative mo(tion exetfor an infinitesimal residual velocity which

will a eComplish imierceptijon as the tin-c becomes infinite.

Wlcn the vehicle is moving to\v.arcls the target, the optaiuml intercep-

tion has several filtel-estin-g geometric properties. As required by Eq. (3. 39) of

the prev\iolus Chapter, the rate of chiange of the primer vector must he perpendic-

11tl1r to the relative veClocity at interception. The thrust is also directed from the

unperturbed p)osition that teintercepler would have at the terminal time to the

Position that1 the target has at the terminal timec. This latresult will be tru6

for any ntretoinhl-eesace with an y pi opulsioii sys;tem.

Another ini1-resling itermeltion problem is when the transfer time is

fLxcdl but the timec at which the initial orbit is left is not specified. T he required

Velocity increment for this ease is given by Eq(. (4. 9), which maY be re-written

-is EqI. (41 it).

- 0 -0 .- 0 -0 tt0
t t.

AV** (4.9)
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-0 -o0 o .
rt -t OV 1 0

t~ - At -v - (4.10)

Tile quantity t ini those equations refers to the time -it which the impulse is

alli)l ed. I'l(, qullantitv At is tile allownhic mancu ver time t-t.

TIhis maneuver is the field-free version of the optimum interception

of one planet by a ""chicle that departs from another planct, with a specified tranis-

for time. liv taking the (lot product of Eq. (4. 10) with itsol,' and finding the sta-

tionaryl point when t 1is allowed to vary holding the quantity &t fixed, yields

Eq. (4.11).

0 -0 -0 -
t I to (r 0 r )(V,' T-V) (.1. 11)

t t

The optimum value of thle interception time is the same as the time of closest

ap)proach of the two vehlicles whenl no propulsion is applied. Thle magnitudle of

thle velocity increment for this case is given by Eq. (4. 12).

- -0
j(V V 0  ' t (.4. 12)

IV - V'I At

-This velocity increment is equal. to the unperturbed closest approach distance

divided by the given transfer time. For this case thle rate of change of the primer

vector and the primer vector are! perpendicular to the relative velocity vector.
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For rendezvous there will be two impulses which will always be given

at the beginning and end of the maneuver. The first impulse puts the vehicle on

a collision course with the target. This is the same impulse as is required for

interception. The second impulse cancels the relative velocity between the two

vehicles at interception. The total velocity increment required is given by

Eq. (4.13).

0 0 -0 -0 1 0 0 -0

AV -r t v )(t -t tl -r (4.13)

The magnitude of the second impulse depends only upon the initial range to the

target and the allowable rendezvous time. The total velocity increment require(]

for rendezvous is a monotonically decreasing function of the time allowed. The

optimumn time for rendezv, ous is always infinite. This optimum rendezvous time

is the same as the optimum time for interception when the vehicle is receding

from the target.

If the transfer time is fixed but the time of initiating the maneuver is

open, the rendezvous may be analyzed by the same type of analysis as wvas used

for the corresponding interception case. Once again, the first impulse will be

the same as that required for interception and the second impulse will cancel

the relative velocity difference. The total velocity increment is given by

Eq. (. 14).
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- -o-o0 - i- 0 o -0 -+ 0T 0
S(V- r V (t . r+ ( -

-" 1( - (4.14)
At &t

The optimum time for initiating the rendezvous maneuver may be found by deter-

xn.ihlothc tationary minimum of Eq. (4. 14) with respect to the terminal timc.

The optimum terminal time is given by Eq. (4. 15).

-0 - 0 -o
t1 to  r ) At (4.15)

t- -o 0 -o 0 2

Unlike the corresponding interception case, the times to start and end the maneuver

are centered around the unperturbed closest approach time rather than terminating

at that time. The total velocity increment for this case is given by Eq. (4.16).

I(V°-V°) x (r- I -r 0
AVt 0 )( 0\ 0 )0+4 *t t] (4. 16)

The two velocity increments are equal in magnitude. They each have a component

normal to the relative velocity whose magnitude is the same as that for interception

in the same transfer time. These two velocity components cancel each other.

Each velocity increment also has a component which is equal to half of the relative

velocity and opposed to the relative velocity direction.

This minimum velocity increment for rendezvous with a fixed transfer

time is the same as the minimum velocity increment for transfer from the first
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orbit to the second orijt in the same transfer time. This is because the unpecr-

turbcd motion of* tile two v'ehicles w~ill produce all possible relative posit-ions of

thc two vehicles on ecach orbit. This result Nvill not generally be true for orbits

in more Complex gravity fields. One other examnplc for which it is truc is for

coplanar circular orbits in a central gravity field.

4.3 Power-Limited Propulsion with Unbounded Thrust gntd

For power-.limited propulsion the acceleration vector will be taken as

identicnl w~ith the primer vector as was done in Chapter 3. \Vith thle primer

vect or given by Eq. (-1 .2) , the equa tions of motion may be integrated to yield

E,"qs. (1. 17) and (-1. 18).

- 0 0-0 0 i o 0 2

- -0 -0 0 1-0 0 2 i 0 0 3

Similarly, the payoff may be determined by integrating its differential equation

to yield E'q. ( 9

1 -0-0 t- 0 1 0.0o( 0 2 1 .0 0 -t)3(419
2 61

For interception the primer v'ector and the thrust acceleration mnust go to zer o

at thev terminal time. The initial value of the primer v'ector must then be given

by Eqj. (41.20).
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0 _ 0 (t 1  t) (4.20)

At the terminal time the position of the vehicle must be the same as the position

of the target. Using this fact and substituting Eq. (4.20) into Eq. (4. 1S) yields

Eq. (4.21).

-1 -0 0-0 -0 -o Vo
-- 0 r -r 3V r-rV -\

S 3 1 0 +3 1 2 3 0 3 1 0 (4.21)
t -t 0) 3 t ]_t 0 )2 (t1-t 0 ) 3  ( I t 0 ) 2

Equations (4.21) and (4.20) provide the solution of the boundary value problem

and allow the determination of all quantities of interest, including the payoff.

Eq. (4.22).

0 i ( V - )(t t )I

- ~t t (4.22)
2 1 to 3

(t -t

This expression for J has an absolute minimun of zero at infinite time. It

also has a local minimum with respect to t if the angle between the realtive

velocity and position vectors is less than 300 and the intercepting vehicle is

approaching the target. The time at which this local minimum occurs is given

by Eq. (4.23).

(r~ r 0(V -V 0 (r~ 0r 0)0(0
t to 2 -0t t-o -2 - - t3 (4.231)
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During an opl(imal interception the thrust acceleration will decrease

linearly to zcro. llowever. for guidance purposes it is useful to have a closed

loop synthesis of tile optimal control in terms of the current state of the vehicle.

the current statc of the target, and of the time to go. Such a synthesis is easily

achieved by regarding the initial state in Eqs. (4.20) and (4.21) as the current

state to yield Eq. (..24).

7, , _ __ _ t (4.24)
1 2 1(t! -t) 2  tI - t

The numerator in Eq. (.1.22) for the payoff is simply the square of the

unperturbed distance between the two vehicles at the terminal time. For inter-

ception with a given transfer time but a variable terminal time, the optimum

teriminal time will obviously be the time of closest approach. This is the same

as the optinmm terminal time for the impulsive case, Eq. (.1 . 11). The minimum

payoff, J. for this case will then be given by Eq. (4.125).

-V0 -0 -0 0)j 2

J t - (4.25)

2 0o 0 2  3

1 Vt VI At

For rendezvous, Eqs. (4. 17) and (.1. 18) must be solved simultaneously

to yield the initial values of the adjoint vector given by Eqs. (1. 26) and (4.27).
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.0 12 o0 - 1 -0 -o 1 0
1 0t t r-r +2(Vt -V (t -t O) (4. 2()

(t -t

-o 6 [- _-0 2 ( _ 0 1 0 (4.27)), = i5? rv r + ((-t o))(4.27)

(t 1  0)2  r t

The corresponding value of the payoff J is given by Eq. (4.28).

0 2 - 0-o -0 -0 02
0 ( VtV ).(r ~r ) -- I

J= 2 t1 0 6 1 02 4 6 tlI t 03 (4.28)

This payoff J is a monotonically decreasing function of the transfer time. The

optimum time for rendezvous is onoce again infinite as it was for the impulsive

case.

The optimum control for rendezvous may be synthesized exactly as it

was for the interception case to yield Eq. (4.29).

= 6 2 - 1

(t1  2 t r -t) (4.29)

In this case the magnitude of the acceleration during an optimum rendezvous will

vary hyperbolically with tin, e.

For the case where the transfer time is specified but the time of starting

or terminating the maneuver is not, the payoff is given by Eq. (4.30).
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0~-~ V f 1 0 101 (V 0 -v0 -r0 -rO
62-6-4+6 2 J 2E 12 t _J

+ 6 It 2t (4.30)

This equation 1Las a stationary minimum at precisely the Sa1nc time as that for

impulsive rendezvous given by Eq. (4. 15). The corresponding payoff for this

case is given by Eq. (4.31).

1 - 0" 2~ I(Vt -0 v) X ( r - r 1

1 6 -o -02 (4. 31)
At Ijv -\A'

The first term in E'q. ('1.31) represents the cost of a constant deceleration whbich

cancels the relative velocity between the two vehicles. The second term rcpre'-

sent-, the cost of a change in position with no change in velocity at right angles

to he 'elciy change. The latter thrust component vre ierl ihtm

and passes through zero at the unperturbed closest approach time.
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CIIAPTER 5: TRAJECTORY OPTIMIZATION
IN AN INVERSE SQUARIE-FIELD

5.1 Integrals of Motion

The Jiamiltonian for optimal trajectories in an inverse square-field

is given by Eq. (5.1) where y is the gravitational constant of the central body.

3.nm r

The mass flow rate will be assumed to be independent of posiLion and time. The

equation of motion is given in second order form by Eq. (5.2).

f r
r=- )-3 (5,2)

m r

The mass flow ra!e is given By Eq. (5.3) for the constantexhaus velocity roc-

ket and for the constant power rocket.

I f
m = -~ ~)(5.3)

This notation with a comma separating the expressions for the two types of

rockets will be used consistently through this chapter.

Tie equation for the primer vector is given in second order form by

Eq. (5.4).

= - y- + 3Y-- r (5.4)
r r
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The final equation for the Lagrange multiplier for mass is given by Eq. (5. 5).

T 2 (5.5)

The first integral or this system of cquations is given by theb

Hlamiltonian, which is constant for an optimnl trajectory as the equations

hive no explicit dC'pcndidncc onl ime. Three more integrals are given by

a vector integral which results from the spherical symmetry of the prob-

lem. Taking the vector cross product of the primer vector with Eqj. (5.2)

produces Eq. (1) ).

-x r X( 
.6

Taking the vecetor cross product of the position vector with) Eq. (5. 4), p~ro-

duces Eq. (5.7).

r (5.)

Adding E'qs. (5.6G) and (5. 7), produces Eq. (5. S).

a-t(Xxr + rx),) = 0 (5.8)

This equation may be integrated to produce Eq. (5. 9) where Ais a vector

constant of the motion.

Xxr rxX A(5)
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An additional inltegrl may be derived when the thrust is unbounded

(cases C-2 and P-i) where the mass multiplier is given by Eq. (5. 10).

(P\ m m (5. 10)
mi m.

For these two cases the Iamiltonian is given by Eq. (5. 11).

r 2

Taking the dot product of the primer vector with Eq. (5.2), produces Eq. (5. 12).

>r = - - yr- (5.12)
M. r

T.Idng the dot products of the position vector with Eq. (5.4), produces Eq.

(5.13).

r 3 (5.131

Adding twice Eq. (5. 13) to Eq. (5. 12), produces Eq. (5. 14).

2-r.X + Xr+ X- (5. 14)'
r 3 m

The time derivative of the left-hand side of Eq. (5. 15) is equal to its right-

hand side. Substituting Eq. (5. 14) into the right-hand side produces Eq. (5. 16).

d - -

T-(A'r + 2r.) =2r. X +X + 3X.r (5.15

dt r M (5.1I)
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Substitutting jq. (5. -11) finto Eq. (5. 16), produces Eq. (.17),

d a
di~~ 2~.: + rX 3f. ( - ,~ - (5.17)

Eq. (5. 17) , rnaly be fintegrated withi respct otm opoueteadtoa

in1tegral of motion For these two problemls ],,q.(. )

+ 2;~+ - ( ~t 5j) Const.

The inltegrfltion C31n be carried out for thle Constant exhiaust velocity -Case be-
cause the thrust is turned on1 onlyV When tho primer vector h1as unit. magnitude.
The integral hiolds,. oil the opcn interval from the initial time to thle finll1 timne

evenl if tlicrc arc sin)gular arcs.
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5.2 Varinlion of Parnmcters

For many problems it is convenient to rewrite the equations of motion

in terms of the variation of orbital elements, instead of the position and velocity

vectors use(d in the previous section. 'The orbital element formulation is useful

for both coasting arcs where the vehicle is unpowered and for low thrust tra-

jectories \\here the elements of the orbit may be expected to vary slowly. Eq.

(5.2) is replaced by six first order equations for ,the rates of change of the

orbital elements. The elements chosen are semimajor axis a, occentricity e,

argument of perigee W, inclination i, longitude of the node C2, and mean anomaly

M\. Results for other sets of elements can be derived in the same way. The

rates of change of these elements may be found in any standard text celes-

tial mechanics and are given by (5. 19) through (5. 24).

da a F ef + F f

- 2 -r 1 53 (5 9

dt mf3

- - (5. 20'
dt mrf3

dw /a-Frf4f5 + F(f3 + ?)fl

dt mef3

a Fz(flf5 cos W+ f4 (5.21

mf5 tan i

di a Fz(f4 cos W - fIf5 sin w) (5.221

dt y mf 5
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dO 'I F, (flf5 CoS +f sinW

dt n f5  sin i (5.23i

d+a F(ff2 - 2e?~) ,ff.+
- 5 r 45 3 (5.24'

dt + mef3

The mean and eccentric anomalies are related by Kepler's Eq. (5.25) and the f.

are given by Eqs. (5.26).

l = E - e sin E (5.25)

f- sinE f3  1-e cos E

- cOSE f4 cos E - e

f5

The Hamiltonian for this formulation is given by Eq. (5. 27).

J. ~+ X + X &O 4- Xj + X +cin(.7

a 0 WpxM~~ (I 7

This Ilamiltonian is the same as the Ilamiltonian given by Eq. (5. 1). The trans-

formation between the two formulationls may be found by the standard techniques

of canonical transformition. A different technique will be utilized herein. The
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basis of this technique is noting that the instantancous values of X and X arc

independent of the thrust level so that X and > have the same value on the

osculating unpowered conic and on the powered trajectory. For the os-

culating conic the thrust will be zero which yields Eq. (5. 28) when Eq. (5. 1)

and (5.27) are equated.

3Y- (5.2 M
r

The components of the primer vector in the cylindrical coordinate

systems whose axis is perpendicular to the orbital plane may be determined by

equating the components of the primer vector in Eq. (5. 1) and (5.28).

2X oe2 fl+ Xef5- (1 2-fM - 2XMef3

f3  (5.29)

/ 1 2xef + Xef(f + f2f3 ) X - (f3 + f

- ef 3  (5.30)

faf4 fl + f 1f 52
Z f5  (5.31)

The quantit.cs P I and A2 are given by Eqs. (5.32).

S cos W + X sin wcsci -X sin W cot i1 i

P2 -X. sin W +X cos W cscI - ).cos Wcoti (5.32)
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The derivative of the primer vector is calculated by determining its

vailue onl the osculating unpowvered ellipse. Trle Haminiltonian onl this ellipse is

given by Eq. (5.33).

H m (5,33)

With this llainiltonintn, the rates of change of the Lagrange multipliers for all

fihe elements except. the semima-jor axis arc zero. The ra-te- of change of the

Lagrange multiplier for the semimajor axis is gi%'en by Eq. (5.34).

a2 M,

The components of the derivativ'e of the primer vector in the r, 0,z directions

tirc given by Eqs. (5.35), (5. 36), a nd (5. 37).

br b r

r TFE bX a a (5.35).

bX . b),
~E +x a +r (5. 36)a r

* (5.37)

Xz bE bX a

The first two terms on the right-hand side represent the rates of change due to

the variables in the equations while the last termis onl the right-hand side are due

to the rotation of the coordinate system. The rates of change of the eccentric

anomaly and central angle are given by standard two-body formulas.
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Carrying out these operations results in Hqs. (5.38), (5.39), and (5.40).
= 3

- a c 1'2 f 5 a \ ) f + > ' 1 3

rae? 
5.S

33

r aeff+ 2 e (5.39)
* -herlf5 +5ho sM2 + Mef5 (5.39)

Xe = aef3

aef 3  (5. 30i

X 1= 22
f f 5 2f

These six expressions for the primer vector and its rates of change are general

expressions which are true both for powered and unpowered orbits. They repre-

sent the results of a canonical transformation between the two forms of the equa-

tions of motion. In the particular case of an unpowered coasting arc, the oscula-

ting orbit will be identical with the coasting arc at all points and Eq. (5.34) may

be integrated to yield Eq. (5.41).

a + F 'A t0 (5.411
a-

On a coasting arc, the Lagrange multipliers for all elements except the semi-

major axis will be constant. It should also be noted that the equations for the

primer vector and its derivative on a coasting arc are the same as the vari-

atiohal equations for position and velocity respectively. This means that

any of the innumerable solutions of the
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variational equations of two-body orbits may be used to determine the primer

vector time history during coast. The present formulation has the possible

advantage of identifying the integration constants in terms of the Lagrange

multipliers of the orbital elements.

The integrals of motion derived in section (5. 1) will now be expressed

in terms of the orbital elements and their multipliers. This will be done by

direct calculation of the dot and cross products of the primer vector with the

position and velocity vrectors. The components of position and velocity are

given by the following standard two-body equations.

~efl

3 af3 af3

The first constant of the motion, the Hlamiltonian, is given by Eq. (5.42) for

the constant exhvust velocity problem and for the constant power problem.

(5.42)

It should be noted that for the constant exhaust velocity problem, this provides a

determination of X in terms of the current state. The value of the primer

vector for the power limited problem may be determined by squaring and adding

Eqs. (5.29), (5,30) and (5.31).

The vector constant will be determined by direct calculation to be

given by Eq. (5.43).where the components of the column vector on the right

side are'in the r, 0, and z directions.
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f1 + ff5

41 15 2

f3

ff -f4
rx 151 +42

-(5.43)
>1w

This result is precisely the result obtained by M-Ioyer (AIAA J. 7, 1232-1235)

for the time-open constant exhaust velocity problem. It is shown in that paper

that Eq. (5.43) yields the following equations for the Lagrange multipliers of

the Euler angles of the orbit.

(5. 41

w= 2cos i +sin i (C sin '  02cos

(5.45)

X. =C 2 sin C +C cosC1

(5.46)

The two constants in these equations are given by Eqs. (5.47) and (5.48).

C1 = ,0 Cos 0 cot i° sin sin 0 o es .o1sin ocsc I(5.47)

0 0 0 0 10 0 0(5)2 X. sin CP + cot i coso -, cos CI csc i (5.48)

It should be noted that equations (5.44), (5.45), and (5.46) are simply the dot

products of the vector constant with the axes of rotation of the Euler angles.
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Finally, the quantity in the last integral may be determined by direct

calculalion to be given by Eq. (5.49).

X 2r' --2X a
a (5.491

Equation (5. 18) then provides a direct representaltion of the Lagrange multi-

plier for the scmimajor axis in terms of the llamiltonian, the time, the cost,

and the semimajor axis. It should be noted that Eq. (5. 18) reduces to Eq. (5.41)

on a coasting arc.
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5.3 Maima of the Primer Vector

For the constant exhaust velocity case, the thrust may only be applied

at absolute maxima of the primer vector having unit magnitude.

• x = 1 (5.50)

Since the primer vector is continuous and has continuous first and second time

derivatives, all maxima except those at the initial and final time must be sta-

tionary maxim a.

' 0 (5.51)

A necessary condition for these stationary values to be local maxima is that the

second derivative of Eq. (5. 50) with respect to time must be negative.

X X + X*X 0 (5.52)

The dot product of the primer vector with its second derivative may be found

from Eq. (5.4) to be given by Eq. (5.53)

= 2 (5.53)3r
r

As the dot product of any vector with itself is necessarily positive, Eq. (5. 52)

yields the additional inequality of Eq. (5.54).

" 0 (5.54)
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Equations (5. 53) and (5. 54) together yield Eq. (5. 55).

X 2 < 1 2 35.264 °  (5.55)
r 3

A nece,, .s- ry condition for the primer vector to have a stationary maximum is

that the thrust direction must be within 35. 264 degrees of the local horizontal

direction.

Equation (5. 52) may be used to obtain a bound on the rate of change

of the primer vector given by Eq. (5.56).

y2
X.X -(1-3) (5.56)

r

The maximum rate of rotation of the primer vector at a stationary maxima is

equal to the rtte of rotation of a satellite in a circular orbit at the same radial

distance. This maximum rotation rate can only be realized if the radial com-

ponent of the primer vector is zero. If the radial component of the primer

vector has the maximum allowable value given by Eq. (5.55), then the rate

of rotation of the primer vector must be zero.

For the case of singular arcs, the magnitude of the primer vector

must remain unity over a finite time interval. In these cases, the inequality

in Eqs. (5.52) and (5.56) must be replaced by an equality.
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Chapter 6: LINEARIZEJ) P1OWER-I,IMITED 'TRANSFER

IN TIlE VICINITY OF AN ELLIPTIC ORBIT.

6. 1 Optimum Thrust Program

In Chapter 4 it was mentioned that if the maximum flow rate of a rocket

is independent of position then the adjoint equations become uncoupled from the equa-

tions of motion for linearized gravity fields. This may be seen by writing Eq. (3.9)

for this case as Eq. (6. 1).

(6.1)

The differential equation for the primer vector depends only upon the time history of

the gravity gradient. In a linearized analysis the change in the gravity gradient due

to a change in position is neglected. Therefore, the adjoint equations for the primer

vector become uncoupled from the equations of motion. The gravity vector and

gravity gradient matrix are evaluated along a nominal trajectory. As long as position

deviations from the nominal are smnall, such an analysis will give a good approximation

to the motion.

The nominal trajectory nimy be powered or unpoweeed. A particularly

important case is where the nominal trajectory is an unpowered elliptic orbit. Optimal

low-thrust trajectories in the vicinity of such an elliptic orbit may be found analytically

by linearizing around this elliptic orbit. Since the primer vector history along a coast-

ing are was foun'd in the previous chapter this primer vector history will constitute tie

optimal control for the linearized problem.
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One consequence of the linearization will be that the Hamiltonian for the

power limited problem will no longer be a constant of the motion. The reason for this

is that the graity gradient matrix in Eq. (G. 1) is now a function of time. In order to

have a constant lamiltonian it would be necessary to solve the exact nonlinear cqua-

tions of motion. The fact, that the Iamiltoniarn is not a constant for the linear problem

creates no difficulty as a full set of integrals for this problem is obtained during the

course of the explicit solution of the problem.

The linearized motion in the vicinity of an elliptic orbit is conveniently

solved in a variation of parameter formulation. The equations of motion are written

as Eqs. (6.2) to (6.7).

da T Fef +Ff

rI F e 1 65
dt Y mf (6.2)

3

de a F f f5 + Fe(f. + f2f3)

mf 3  (6.3)

d 7 (f +3

d= -Fff + (f + )f (.4)

d reef3

_- F2 f4 (6.5)
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dT (6. 6)

01f -2ef 35
+ 5 3 ~ (6.7)

dt a ymf

'11w angular variaiblos a ,, anld represent small rotations of the

elliptic orbit in~ its own plane, around the major axis, and around the latus' rectum,

respectively. As the linenrization of the problem only involves smanll rotations it is

convenient to use orthogonal rotations rather- than Eiler angles. 'The angular v'ariables

aredefncdbyEqls. (C6. 8) through (6. 10) in terms of va riations in the conventional Euler

angles.

6W ~WCos i6C (6. 8)

SCos w6i + sinisinwo 6n
(6. 9)

-sint W6i + sin i Cos W (6. 10)

The Lngrninge multipliers for the linear problem will be exactly the

same as for the coastingr arc. That is, the Lagrange multipliers for each of the

orbit elements except the semimajor axis will be constant. The Lagrange mul-

tiplier for the sen-irnajor axis will be a linear function of time given by Eq. ((.11)

and evalualed on the unpowered coasting ellipse.
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X 1 = 0  3~X 'a 2 M - (6 11)

For this set of orbit clemcnts the optimal thrust acceleration program is given by Eqs.

(6. 12) through (6. 14).

F Ta 2Xac'" + Xeef -( X  f5 - 2XMe 3

X r ef 3

Fa 2Xaef5 + Xeof (f4: + f2f3  X M)(f3 + l)1Fe O V (XF. 13)m ef 3

F Xf f
z 4 f Xf 1 5  (6. 14)

Thr thrust acceleration program represents the vector sum of six different accelera-

tion progrzims corresponding to the initial values of each of the Lagrange multipliers.

As the thrust acceleration vector for this problem is identical with the primer vector

on a coasting ellipse, these acceleration programs arc also of interest for impulsive

transfers. The programs corresponding to the first five Lagrange multipliers are

illustrated in Figurcs (6. 1) through (6. 5) for an eccentricity equal to the square root

of 1/2. Each of these progrnins will maximize the change in its orbital element for

a given fuel consumption during a fixed time period. In general, each program will

also produce changes in the other orbital elements.
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The optimum program for changing semimajor axis is illustrated in

Figure (G. 1). For this program the primer vector is always directcd along th6

velocity vector and its mignitude is proportional to the magnitude of the velocity.

The locus of the tip of the primer vector will describe a circle, as this circle is known

to be the hodograph of the velocity vector for Keplerian motion. The primer vector will

have a stationary m'aximum at periapsis and a minimum at npoapsis. At an eccentricity

of zero, the primer vector will remain constant in mngnitude as it moves around the

circular orbit. As the eccentricity goes to unity, the magnitude of the primer vector

at periapsis will approach infinity. If this magnitude is constrained to be finite then

the primer vector will consist of a discontinuous function having finite magnitude

at periapsis and being zero everywhere else.

Fig. (6. 1) Optimum thrust program for change in a (c 0.707).
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The optin-ium thrust program for changing eccentricity is illustrated

in FigLire (6.2). This program always has two equal maxima at apoapsis and at peri-

apsis'for all eccentricities. The primer vector solution corresponding to this Lagrange

multiplier on a coasting arc allows for two impulse transfers with this coasting arc in

between the two impulses. The direction of the thrust always approximates the direc-

tion of the semiminor axis of the ellipse. For small eccentricities, there is 1 latively

little variation in the magnitude of the acceleration. At an eccentricity of unity, the

magnitude of the acceleration vector Varies linearly from zero at the origin to its

maximum value at apoapsis. Like the semimajor axis program at unit eccentricity

there is also an isolated value at periapsis which in this case is equal to the value

of the primer vector at apoapsis. For this eccentricity of unity, the thrust is direc-

ted exactly at right angles to the major axis.

Fig. (6.2) Optimum thrust program for change in e(e 0. 707).
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The optimum thrust program for rotating the orbit in its own plane is

shown in FiguLre (6. 3). In this case, the primer vcctor also has two equal maxima

which constitute possible localions for impulses in the impulsive problem. These

maxima occur in the vicinity of the semiminor axis and arc exactly at the scmiminor axis

for eccentricities of zero and one. For an eccentricity of zero, this program is the same

as the program for changing eccentricity but is moved 90 around the orbit. For an

eccentricity of unity the thrust is directed at right angles to the, Pajor axis instead of

lying close to it. At this eccentricity, the acceleration program varies smoothly from

zero at apoapsis and periapsis to a maximum at the semin-iinor axis. At this eccentricity,

this program is the same as the program for rotating the orbit around the latus rectum

except that it lies in the plane of the orbit.

Fig (6.3) Optimum thrust program for change in q (e 0. 707).
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Figuirc (6. 4) shows% thle optMimum program for rotating the orb~it -round the
semima.joi axis. In this cause, the magnitude of the primer vectoxr is proportional to its
per~pcrjdicula r dCi sta1jc from th10in ais rectumy. Figure (6. 5) showvs the primer vector
solution for rotating the orbit around thle l1tus rectum. In this case, the magnitude

of thec primer vector is proportional1 to the perpendicular distance from the maj or

axis.

Fig. (6. 41) Optimum thrust programn for chainge in a (c 0. 707).

Fig. (G. 5) Optimum thrust programnn for change in 13(e 0. 707).

T]he sixth thrust program, the program for changin- the mean anomaly,

is a combination of three programs, the program for rotating the orbit in its own plane,

a purely rzidial prograim whose magnitude is proportional to radius and the sc'mimajor

axis program, with a linear time variation superimposed upon it. ]3ociuse of the change

in te smimjor -xs -roram with time, this is the only program thqt will not be peri-

odlic and wxill not repeat ilsoif.
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6.2 Integration of the Equntions

The correct first order terms for the rates of change of all elements

except the mean anomfly may be found by simply substituting Eqs. (6. 12) through

(6.14) into Eqs. (6.2) through (6.6) and integrating. For these integrations the orbit

elements are taken as the elements of the unperturbed ellipse. The independent Vail-

able used for the integrations is the eccentric anomaly of the unperturbed orbit. The

first order pertirbations in semimajor axis produce first order perturbations in mean

anomaly so that Eq. (6. 15) must be used to calculate the perturbations in the mean

anomaly. The double integration implied by this equation may be avoided by rewrit-

ing the perturbation in semimajor axis in terms of the identity of Eq. (6. 26),

d -I 3 a F(ff 2e?)-Fff(f
_A r45 3 O 0 1 f23 )

d ef (6.15)
At a 2 a Y 3

d(tAa) tda
dt dt (6.16)

The integration of the equations of motion with the optimu'n thrust pro-

gram is straight forward and results in Eqs. (6, 17) through (6.24). The various inte-

grals occuring in these integrations arc expressed by the 4 functions given following

Eq. (6.24).
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a a ae eae l ' (6.17)

e)a e eco M (0.18)

~an+ xe + coe 6 + XMD)OM (6.19)

66= X4 +XC) XD
(6.20)

A=X4 +

M.T .- t- 4,, +Xe4) + 3' e ' I. V (.2
3 a aM e CAT OAT~ 4MAX

' 2 (6.22)

+ CD A + A % 0 + 2 8 B+XX4

C A A 1ql,
+XX ) c1l~~'~~MM +x 4)(6.23)

t T (E -e sinE -Al)

(6.24)
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aa 'a- /3)u1/2 4{E + C sin El E°0

= 3 1/2 4(1 - e2) [sin El E

3) 1 lcos El 0

(7y/ 22.1

) 3E + GeE sincE +4 Cos E +

2 2/2 E

S=(/ ) (1 ) [(I e - 4c sin E +3 sin Ecos E + sin3 E]E
,y2 2 3 E,

1/2 1/2 232 )  3 - c 2 +1 3 E(1-c)~ [cos--e osco os E ] E °

'y2c 3 *E

0 =(2)-3 (1-e 2) 6E sin E +7 cos E +

"y 2 3_1 +e 2 coS EE0 EO
cos E---- 6M sinE] E2e 3
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These equations rcpresent a complete first order solution for optimum

transfers in the neighborhood of an elliptic orbit. They are linear in both the changes

and in the state and the corresponding Lagrange multipliers, By using tie proper

boundary conditions or transversality conditions, it is possible to solve any desired

interception,rendezvous or orbit transfer problem. For interception the transvers-

ality condition is that the final value of the thrust acceleration given by Eqs. (G. 12)

through (G. 14) must be zero. For rendezvous the initial values of all the Lagrange

multipliers must be found so as to drive the terminal state deviations to zero. For

orbit transfer, the transversality condition is that the Lagrange multiplier for the

mean anomaly must be zero. The other five Lagrange multipliers must be deter-

mined so as to reduce the deviations in their five state variables to zero.

6.3 Secular Ch:inges in the Orbit

While Eqs. (6. 17) through (6.24) represent a complete solution of the

problem they are rather complex and contain a large number of terms. If the time

for rendezvous or orbit transfer is large, so that the maneuver requires many rev-

olutions in the elliptic orbit, then the equations can be greatly simplified and an ex-

plicit solution is easily obtained, This is done by neglecting the bounded periodic

terms in Eqs. (6. 17) to (6.24) in comparison with the dominant secular terms to

yield Eqs. (6.25) to (6.32).
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2 5- 2 +82.
2 2 e 2 (6.27)

0 E

.1 l+4e"
c~ 3 2

2(1-e ) (6.28)

aE

- ,23. y 2 (6.2-9)e

4 2  2 2a 2 25+8e - 33M* E - E(I = E X (6.30)
_-3 0+ 2c y 2

2 5' 2 +  22 2 5 2 %2 a -42al 4E a+ E eX ~(c)E +e
a 43 (\ f - 2 2

2 2(2 3(631)6 a 2 4e 22M 5(1- 2 3 E +>. +M1 3
2e V21c) A' 21 'V

3

For rendezvous or orbit transfer, the 1,agrange multipliers that satisfy the boundary

v'alue problem nre easily dletermined and the payoff may bc wvritten directly in terms

of the changes in the elements and the total transfer time.

+ 2 A 2 +2l-e2 Aa2

2 2
2at' .a 5 1-c I '4e

2a2 2 (6. 33)

3
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- 2 'a 5 +,8ec
4 5- 4e2

5 5-4e2  (6.34)

If only long time-orbit transfer is considered, all the cross product

terms in Eqs. (6. 25) through (6. 32) disappear. The thrust program corresponding

to the Lagrangc multiplier for each orbit element not only maximizes the rate of change

of that clement, but produces no change in th6 other four elements. This particular set

of orbit elements was chosen because they have this orthogonality property. Not all

sets of orbit elements vill have this property.

Equations (6. 12) through (G. 14) show that there are no secular chwiges

in the thrust acceleration programs for orbit transfer. The averaged thrust accelera-

tion will, therefore, remain constant from revolution to revolution, and the orbit ele-

ments will,on the average, chango linearly with time.

For rendezvous problems the final value of the mean anomaly, the siXth

orbit clmietr must be considered. Equation (6. 33) represents the fuel requirement,

for chnging all six elements over long time periods. The quantity AM defined by

Eq. (G. 34) represents the perturbation in the mean anomaly produced by the thrust

programs for changing' seminimjor axis and for rotating the semimajor laxis in its

own plane. The fuel required to change the mean anomaly depends upon the square

of the difference between the desired perturl)ation and this particular pe rturbati on.

The thrust progr:nn that l)roduces the desired perturbation in the mean anomaly is

the semimajor axis program of Figure (6. 1) with an averaged thrust acceleration

that is a lineir function of time. The terms involving X in Eq. (6. 1.2) and (G. 13)
M/

have a negligabic effect on long-time motion but are significant for short time ren-

dezvous. Since Eq. (6.33) holds only in ihe case of long time motion, the mean
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,nomaly term of Eq. (G. 33) will generally be negligable compared to the terms in

bracketF because it. is inversely proportional to time cubed. The fuel required for

rendezvous will be only slightly greator than the fuel required for orbit transfer for

these long-timc cases.
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CHAPTER 7: OPTIMUM POWERL-LIMITED
ORBIT TRANSFER IN STRONG GRAVITY FIELDS

7.1 Integrals of Motion

In section 6.3 of the previous chapter, the secular rates of change of the

orbit elements in the presence of small perturbing thrusts were determined. In the pre-

sent chapter, these rates of change of the orbit elements will be integrated over many

revolutions to determine the optimum sequenee of orbit elements between the initial

orbit and the final orbit. The changes in the orbit elements will no longer be assumed

to be small, but the rates of change of the orbit elements due to a small perturbing

thrust will be assumed to be small. Only the first order terms in the equations of

motion w.ill be considered. The analysis is an application of what is known as Kryloff

Bogoliuboff averaging. The errors of this type of averaging will be on the order of

the square of the ratio of the thrust acceleration to the acceleration of gravity. For

typical electric propulsion systems with accelerations of about 10-4 g's, the error

in this approximation will be on the order of 1 percei. at about 10 earth radii.

Using the results of section 6. 3 of the previous chapter an averaged

lamiltonian may be written as Eq. (7. 1).

2a2 2 52- 4e 22 1+4c 2 x2  . (7.1)

S 2e2(1-e 2

For this Hamiltonian the Lagrange multiplier for the mean anomaly has been assumed

to be zero as only orbit transfer and not rendezvous will be treated. The Lv'grange
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multipliers for the angilar vrriables in Eqs. (7. 1) may be expressed in terms of the

Lagrange multipliers of the conventional Euler angles by Eqs. (7.2), (7.3), and (7. 41.

Xe X(7.2)

. = =. cos U. sin w csc i-X sin Wcot i (7.3)

X - 2  - . sill 0+ X Cos Wesci- cos Wcoti (7.4)

The use of the conventional Euler angles will allow large rotations to be treated. It

should be noted that X and X are the same as the quantities and ,8 of Eq. (5. 32).

The vector integral given by Eqs. (5.44) through (5.4:8) of Chapter 5 apply also for the

present problem.

It is convenient to replace the eccentricity by a new variable .0 defined

as the arc sign of the eccentricity, Eq. (7. 5). Its corresponding Lagrange multiplier

is given by Eq. (7. G)

p -- sin e (7.5)

1X 1 (7.6)
S C

In terms of this new variable, the averaged Hamiltonian is now given by Eq. (7. 7).
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2
27 a 22 5 2 1I + 5 cot 2 1 + 5 ta 2 1 2Sa +-X + + +-XB

2y 2 2 2 2 (7.7)

It should be noted that the rates of change of the semimajor axis and the variables

and B are independent of the eccentricity. Only the rates of change of the rotations

around the major axis and in the orbit plane depend upon the eccentricity. By averag-

ing the Hamiltonian of Chapter 5, another integral given by Eq. (7. 8) is obtained.

iN )2 .(7.8)

This integral may also be obtained by noting that the Hamiltonian is independent of

the independent variable, time. This implies that the averaged value of the square

of the thrust acceleration is a constant throughout the motion. Equation (7. 8) may be

immediately integrated to determine an integral for the payoff given by Eq. (7. 9).

J =f t (7.9)

Because the averaged acceleration is a constant, the cost increases linearly with time.

Another integral may be found by averaging Eq. (5. 18) and (5. 49) to yield the results

given by Eq. (7. 10).

0 0 ' 0
X a a -i= a -J (7.10)

a a a.
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Another integral may be found by writing down the rates of change of the

semimajor axis and its Lagrange multiplier. The averaged Hamiltonian possesses the con-

ventional canonical equations in terms of the averaged values of the orbit elements and

their Lagrange multipliers.

3
da a
dt. ay (7.11)

22
d H 4X aa a (7.12)
dt a y

By dividing Eq. (7. 12) by (7. 11) these equations may be integrated to yield Eqs. (7. 13)

and (7. 14)

o2 0
2= MY - - 2 Xa

a2a 3 o2 (7.13)32aa2

0 2oo2
a ,4X'aO t 2a° -It24a = 2 t (7.14)
a 4.-

Equation (7. 10) may be verified directly from these equations. The notation x ois

defined as the initial value of x raised to the n th power.
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The explicit solution for the semimajor axis and its Lagrange multi-

plier allows the elimination of these variables and the reduction of the problem from

a five-dimensional problem to a four-dimensional problem. In order to do this, it

is convenient to rewrite Eq. (7.7) in terms of the rates of change of the orbital ele-

ments rather than in terms of the Lagrange multipliers. The equations of motion

such as Eq. (7. 11), may be solved for their Lagrange multipliers in terms of the

rate of change of the corresponding orbital element. This can easily be done in

the present case because of the lack of cross-product terms to yield Eq. (7. 15).

2*2 *
a +20 + 2 +  2 +

2a [4a2 5 1+5 cot I + 5 tan2  ] (7.15)

A new payoff variable 4 whose rate of change is defined by Eq. (7. 16) is now

introduced.

2 2

5 + 5 cot 1 + 5 t, (7.16)

It will now be possible to separate the original. optimization problem into two parts.

The first part is to determine the cost for given changes in the semimajor axis and

4 . The second part will be to minimize 4 for given changes in the remaining four

orbit elements. Eq. (7. 16) shows that this second problem may be interpreted 'geo-

metrically as the problem of determining a minimum length trajectory or geodesic

in a four-dimensional orbit element space.
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In terms of this new variable, the -amiltonian of Eq. (7.7) is now given

by Eq. (7.17).

-y + (7.17)

The rat of change of is given by Eq. (7. 18) where it should be noted that Xzb is a

constant.

a

2y (7.18)

Equation (7. 18) may be integrated by use of Eq, (7. 12) and (7. 13) to yield Eq. (7. 19).

>1 .0"10

- Cos f? 2nP +Vs sn ?b
(7.19)

The constants of Eqs. (7. 19) and (7. 14) may be eliminated to determine the payoff

explicitly in terms of the initial and final. values of the semimajor axis and the total

chango in p, Eq. (7.20).

j 2y Z. _ cos
0 4/6- (7.20)

This equation has an interesting physical interpretation. The cost is the same as the

cost of transfering in field free space from the mean orbital velocity of the initial orbit

to the mean orbital velocity of the second orbit with an angle of the /,2161 between the

1.04.



two velocity vectors. By the definition of t/ this will provide a complete solution for

problems where the eccentricity is changed but there is no rotation of the elliptic orbit.

In such problems, the variable z will be equal to the total change in the orbit element

cp divided by .f .
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7.2 Coplanar and Coaxial Transrers

It is possible to solve the four-dimensional problem of minimizing in

terms of the remaining four-orbital elements explicitly. However, the solution of this

general orbit transfer problem is rather complex and only 2 two-dimensional problems

will be considered i Lhis chapter. These two problems are the important cases of co-

planar and coaxial transfers. In both cases there is only a rotation around a single axis.

In the coplanar case, the rotation is around an axis perpendicular to the orbit plane. In

the coaxial case the rotation is around the major axis of the orbit. The coplanar and

Coaxial Cases arc obtained from the general case by means of the following definitions.

Coplanar

0 (L 0i- 0 X =0

0 - 0

Coaial

i = X -- .
1
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Because of the particul'ar form or the Ianiltonian. Eq. (7. 7), the coplanar and coaxial

cases can be transformed into one another so that it is only necessary to solve one of

these problems to obtain the solution of both. The following transform ation equations

will talc the solution of one problem into the solution of the other problemn.

Coplanar Coaxial

to<-> ip1/

i 0 <- > tO -0

0 0>- 0

The llamiltonian for the coplanar problem is given bY Eq. (7. 21).

a +X 5cot 2]
2y Ha 2  (7.21)

The equations of motion and the Euler Lagrange equations are given by Eqs. (7. 22)

through (7.25).

2 ,c- €(7.22)

2 a (7.231

5 22
>, = cot 0 csco
(p 2 n £ (7.24

k 0
£2 (7.25)
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Afirst integral of these equtitons may13 lxc obt, ined f-rom tile collstanCy of a as E q.

(7.26).

2 02 2 2 0 *2
x ~ X (cot ". -cOt p (7.26)

Dividing Eq. (7. 23) by Eq. (7. 22) and util izing Eq. (7. 26), Eq. (7. 27) is obtaied.

2727
5 ~(+5 cot 0 )X t-

Equation (7. 27) is readily integrated to yield Eq. (7. 28).

(. cot) )J (7. 28)

o l Co -si n k C o s~ 1 c s 4COS

The variable It in Eq. (7. 28) is defined by Eq. (7. 29).-
1

Xcotk 1 - 0 2  X2 cot 2 0 0  (7.29)

By utilizing thie definition of tile rate of chanige of ib givcn in Eq. (7. 1G) and integrtig

Eq. (7. 30) for is obtained.

(1 .7 ' ,CosO (7.30)
+4co~k 1 Cos~
= PO

108



Equations (7. 28) ind (7. 30) pr'ovide a parametric rpesnttoofheolution for

and W' inl terms1" of 01 and thec initial conditions on p and the Lag-ra-nge multipliers.

w 0 (7. 312

This ty.pe of represent~ation can Ibe explicitly solved for in the present case. The struc-

ture of the resultig exrernal is shiowny in Fig. 7. 1. 'The va,,lues of w are lim-ited toii tile range bectween 0 andl ,T. Largecr rotations need not be considered, The values ofU are limited to the. rainge betwown 0 and 2Tr. VJalues of. 0- greater than ',T rep~resent

Selliptic orbits having the opposite sense of rotation to fitc initial orbit. The direction of

krotation is rev'crsel 1)y asn th-rough a unit eccentricity ellipse having zero0 angular

monmenti nlbut a finite, Semnimajor aIs

-ul18 -1-, ,x-.

120 __ _

w.
DEG I

GO.......j.

0 30 CIO 90 120 150 1804DEGREES

Fi. '7. 1.-IStructure of the extremals for oQ 45o.
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If tile desired terminal value of o is also 90 0 there will be 1no change in the eccentri-

city during the transfer if the total change in thec angle W. is less than 36 0. The v'eiti-

cal line for k - 90 0in Fig. 7.2 is a mini-nizing extrcmal until it. becomes tangent to

0
the envelope at this point. Beyond 36 the ellipses decrease in eccentricity, and then

increase \it to produce the extremals shown for other values of k V While this trans-

fer is somewhat acadlemic the corresponding coaxial transfer is the m-ore interesting

case of transfer betwoon. inclined circular orbits. For inclinations of less than, 36 0

the orbital transfer will involve no change in the eccentricity of the intermediate

orb~its while for angles greater than 36 0 the intermediate orbits will b~ecome eccentric,

Tfhe extronMals and payoff curves for two other initial values of 0 45 0

and 0 0 are. shown in Figs. 7. 3 and 7.4.

120 *--- -.
k, 15,~..

DEG 3Q I'60---I-.
4!

30 60 90 120 150 too

,DEGREES

Fig. 7. 3 EXtremals and payoff curves for coplanar transfer with oO 450

* l:: 15 30 Go, 75-!

0 30 GO 90 120 150 00

OEGREL.S

F ig. 7. 4 Extrernals aind payoff curves for coplanar transfer in tile (legenera3te case 00 0 0.
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In Figure 7, 1 thrce sample extremals, A, B, and C, arc shown representing di fferent

0 0. dilAi olwdfo
values or the constarnd kI for a value oF q of 45 ° . If extrmal A is followed from

its start at zb 0, it will first pass througih a region in which there are no other ex-

trcmals which go to the same point. Up to point 1, extremal A will represent a unique

solution of the boundary value problem for any point it passes through. At point 1, ex-

tremal A first, crosses an envelope of extrcmals shown as the dotted line. Beyond point

1, there is another family of extremals such as extremal C which goes to every point

along extremal A. The boundary value problem no longer has a unique solution. Be-

tween point 1 and point 2, extremal A represents the absolute minimum value of 4

to reach any point along it. At point 2, cxtlremal A has the same cost as extremal

C. A point where two extremals of different families have the same cost is known as a

Darboux point. Detween points 2 and 3, extremal A still represents a locally mini-

mizing solution of the optimization problem but does not represent the absolute mini-

mum which occurs with extremals of the other family. At point 3, extremal A first

becomes tangent to the envelope of extremals. Such a point is called a conjugate point.

At the conjugate point, the Jacobian of the state with respect to the initial values of the

Lagrange multipliers becomnes equal to 0.

C) 0 6c

.i 0 ~ W )
(0 7

kO 5kw (7.33)
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If xtrnia A s cntiue~ byond point 3, it ceases to bec even locally minimizing.

That is, there are curves in the immediate neighborhood of cxtrernal A which will

have a lower. cost. At point 3, extremal A violates in additional necessary condi-

tion for optimality of the classical calculus of variations that is known as thle Jacobi

condition. The Jacobi condition is simply that a minlimizing extremal must possess

no conjugate points bctween its initial and] final points. Fror problems in the classi-

cal calculus of variations where the control never lies on a boundary, the combination

of the strong forms (without equality) of the maximum principle and the Jacobian condition

is sufficient for an arc to be locally minimizing. It should be noted that these suffici-

cn~y conditions do not guarantee that the extremals represent an absolute minimum

as is shown b) teeample of extremal A between points 2 and 3. On extremal C,

the three points 1, 2, and 3 become coincident.

A sot. of extremals and constant cost linies foi- the minimizing extremals

is shown in Fig. 7. 2 for anl initial Value of eof 90 0

1_ 1
120 -

DEG

0 0~ 4Y

0 30 Go 90 120 ISO 180
~DEGREES

F ig. 7. 2 Extremals and payoff curves for coplanar transfer with ~o -90)
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J11 Fig. 7. 41, tle &rler eomsdgenerate l)cafuse the argument of perige of a

circular orbit is undefined. In this case, the fuel, consumption depends only upon

the cNIJmg'es ill ceectiricity ai id semnimajor axis betweecn the initial and finial orbits.
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CHAPTER 8: I,INEARIZED IMPULSIVE TRANSFER

IN TIE VICINITY OF A CIRCULAR ORBIT

8, 1 The Primer V7ector on a Circular Orbit

The conventionnl orbit elements used in Chapter 5 to derive the equations

for the primer vector have singuit]rities at zero cecentricity and zero inclination. It is

desirnble to use another set of orbit elements which is wvell behaved for this case to rep-

resent the primer vector on , circular orbit. One such set of orbit: elements is defined

by Eqs. (8. 1)

e e Cos (P + &) e sin(W +
x Y

i -i Cos i = sill(8 1

x Y

M -=M+W+ E -E u+
x x

For the particular case of zero eccentricity the rates of change of these

orbit elements are given by Eqs. (8.2) to (8, 7).

cia a F
----- (5.21

dt y m

de 7-E F (S.3)
-sin + 2cos*dt DI x m)
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dei

y ._ rsie -  2 cos I.
d tIn x III( .4

di x " F OE

(i = cos E (8.5)

di F 18.0)
Vt sin E,d t myil x

dM Y Fx r (8. 7)
-I -- -2 -(7

dt a a m

The primer vector in terms of this set of orbital clements is given by

Eqs. (8. 8) through (8. 10) and thc ratc of change of the primer vector is given by Eqs.

(8.11) through (8.13).

( sillE cosFE*2XM

r e x e, XSX 3' X

2a ;(8.9)
S(2Xa + 2X cos E + 2 sin Ex)

v 1 a x x c

a ( (8.10)
X -(\. cosE + X. sinE)
z y I yx y

=1 (8. i'}
r n(-2\ a- cosE -X sinEr a a e x ey x

x

115



sinE +) cos E + j) (8.12)
X a ex x eg x

Xz ='-(-Xi sinE + X. cosE x )
z X 1 X

X y

As for the elliptic orbit, all the Lagrango multipliers will be constant except the Lagrange

multiplier for the semimajor axis which will vary lincarily with time or vith the central

angle. Eqs. (S. 14) and (8.15).

( (S. 14\

3 E -E °

0 x X
Xa a a(. 5x

It is somewhat easier to visualize the behavior of the primer vector by transforming the

origin of the polar coordinoic system to yield Eqs. (8. IG) to (8. 19). -

r 2 ) (8.1(;)
ex c03 X

T" (2 Xi', 2 2 cos o+ 3I a- 33 (o)
cx ey x x (8.17)

eYi C y X ex iv yix 
_ : x ( c o s -+ - - s in 0)

ex ey ex ey
._.s' . (8. 18)

E - tanx >,
ex
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This form for the prirmer vector on a circular orbit may be used to treat trainisers be-

tween neighboring near-circular orbits. The geometric properties of the primer vector

are of considerable importance in this analysis and vill be illustrated in the following

Sections.
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8.2 Time-Open Case---Nodal Solutions

For thw time-open case, the .T-agr1inge multiplier for the mean anomaly is

0 and the components of the primer vector ny be written as qs. (8. 20) through (8. 22).

*F +- sine (8.20)ex ey

a o 2
X (2X a +2 X+ )2  Cos (S.211/T xo., + -e yx

+X *X X.x XA. -AXX.c i x + ex IV Xex IV, -- e x Sine
z - -C cos + ' sin 8 (8.22)

ex ey ex Cy

These equations represent the equations of an ellipse in three :pnece. This ellipse is

formed by the intersection of a 2:1 elliptical cylinder parallel to the X z -xis and az

plane which passes through the intersection of the cylinder axis with the X > plane.

A typical case is illustrated in Fig. 8. 1 hich also shows the projection of the ellipse

olthe plane.

Primer Locus Dingram

F ig. 8.1
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For ti-mnsfers with mlore thanl one impullse, this elliptical primer' locus

mlust Ii av.e mlore than1 onle equal ina:xillma'. '['here alre onlly thlree con Ii ")gu rationls of this

ell ipt ical primer loeis w~hicoh allow the primonr vector to liave more thian one ma1ximuml.

Thei(, first configuration, to he t-reated in this section, represents -I family1.N of 13olutions

where tile center or the ellipse is located -it the origin. (Fig. 8i. 2) inl thlis case thec two

0
eqiual mazxima occur onl thc major axis of thle ellipse and( airc separatedl by 180 . For this

CaseC thle conPonen lts of thc primecr vcctor ,t the sccondl impulse wvill be equal in magni-

tude b.ut opposite in sign to0 tile componentts or* the primer v'etor at. the first impulse.

Primer Locus Diagram

Fig. 8. 2

As the two impulses are separated by 180, both impulses must occur onl

tlle line oif intersection or line of nodies between the initial and final orbit planes. If they

(10 not, then the seonowl impulse couild not remove all of the inclination betweeni the two

planes. As a result, this ease Will be referred to ns thc nodal czise. 'ihe total &V !or

the nodail case is given by Eq. (S. 23).



2 C 
2

It should be noted that thle fuel consumption is independent of the change in semimajor

axis for this case. in order for the primer vectlor to 1) ye two equal1 maxim's fol. this

calse, the two inequalities given by Eqs. (8. 24) und (S. 25) mnust be Salisfied.

2

My (8.25)

For tile equations, the x axis has been assulmed to he aligned with the line of nodes.

8.3 Time-Open Case: NonlegeneraIc: Solultions

A second configuration which allows two equ.1l maxima of' thle primer vector

corresponds to cases wherec the ellipse passes thirough thle xis and the primer vectors

agil lhe inl sinllve phlne. (Fig. 8. 3)
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PrmL ocsDnrm

F i 4 8

This ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 enewl erfre on -nnneeeiecs steN osmto vl

thiscs ilb efrc oa 1 nondegencratc, casc is thve fby Eqsupto (S.ll)

dcpcn 2pntecagsi l fteobtlccct.Frti aeterda n

out~~~ ~ of2 pl2 2opn~t of2epi o etrh~ceuladopst aus~

Aw imuss Ahi th cicmfrnta copnet hav equa A'tcs + o -th i

F-2y, 0 2ao2 ya o

(8. 26)
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F'or' the pri mci' vector, to uhave two ccji:xi maI rol. this case, throllowiln Iwo inlequ11.l i-

lic 111must he witisFied.

22
A 2 22

0 Ac Ac 2i (.6i
o2 Ix y AYAiA

8. 'imv-Op])*r C ast: Silln 1til ar ".olit ionsl

The1 th ir )'lconrigurnlo' of' the primier v'ector I ocus w.hich aIllows f'or morc

than onle maxima of the primer voctor is aI comloination of the two previous cases where

the primer locus passes through thec > axis and where the center of' the ellipse is lo--

catccl at the Origin of the) coordimite, System. This particula Ir locus is til led So that

the primer vector has unit mnpiide at. all Points. .Uhis, is anil example or a) singular

solution where thic oi'!6!.J: loCation of' the impul-ses can not be determined from the

p111mer1 vector Solution. ill fact., for thbis linear problem-, the singular solution Is

ununique in that there are an infinite number of tra nsfers involving di lerent numbers

and locations of' impulrscs all of which have the same total fulC consumption. This

particular locus (Fig. 8.4) is only one of two that, occur for circular reference orbits.
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Primer L~ocus D~iagramf

Fig. 8. 4

Tfhc other singular locus is a special case of the nondepgencratc as whore the ellipse

shrinks t~o a point located at plis or minus one on the axis. For the singular case

illustrated in Fig. 8. 4, the total 6,V is given by E iq. (8. 29).

- -- ~~~.-------ii(. 9
AV 14vi!.fA7C0 ) + Ae x(.9

Once again, there are two inequalities w\hichi must be satisfied to distingish the singular

case from the two other eases which can occur.

The fuel consumption of the different cases is illu strated inl Figs. S. 5

through 8. 10. In each case, the total chlange in Semniajoi axis and eccentricity are

1.23



l~~iot()n(e(! WihCfiSOf COI)st values or the totl change in inclinntion. %llthe

elunments a rC~ norm n11 Clv0 1 d ) id them by ithe total1 AV assum i ng a grnivitat i on]

Constant of u ni ty. The total chanfge in inclination coton Is range from a numerical

v.,1111 of one at the orifgin to a aleof zero at the edges of the squrie figures. Wellh

contour mpjorsents achanage of . 05 in the normal iz7ed inclinati change.

:::zjz--------

illl h ii
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lince,,ss ofe nodirginderaes and the singular direcion ofow thti ihnei cctiiy n Fig. S. 1,0w
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For thesec ases wve must return to Eqs. (8. 16) through (8. 18) including

thle Lagrranger multiplier for the mein anomaly. When this term is included thc elliptic

locus becomes stretched out to form ,I cyclold--like curve inl three (liiensions. It is as

though1 oflC took an elliptic coil of wvire andI( st-rotehed it out, uniformly in the direction.

III this ca'se it. is plosSible to hanve transfers with tip to six impulses inl thc threc dimlenl-

sional case and up1 to four imnpulses inl the twNo dimensional case. There is I general

result thai linear transfers require a number or impulses no greater than the number

of st,:Itcs. Inl thle time.-openl case this means thiat tra nsfers between neighn6ri ug near-

circular orbits imay require iup to five imlpulseS. Hlowever, these cases, inl fact. re-

quire no0 more thanm two impulses even inl the singrulmr ease. llowever for time-fixed

rendezvous, i; is easy to construct two dhiensionnl transfers whichi use the nuximumn

number of four impulses. Three dimensional trainsfers which) use the mnximum num-

ber of six impulses hI: v'e been determlined b~y Mare and by 13reakwell.

For the Iw.o (limenmonal case, Prussing, has considered the four impulse

t-ranlsfers and has showvn that. all of these trans fers have symmectry properties. 'Lie conl-

structs these transfers b)y taking thle two dlimeinsional oveloid-like locus and drawing a

circle which is tangent to thle locus at two points, As long as these tangencics produce

local1 maxima of the primer vector, hie has (leterinelld Ilhe stationary' interior maxima

of the primer vector. The next intersetions of the circle with thle primer locus yield

the nonstationary terminal imaxima of the primerc) vect-or. Pr.ussing has shown that thecse

solutions exist. withb both odd and even numbecrs of loops of cyci oid-l ike curves included ill

the circle. The single loop transfers even exist for tranisfer angles slightly below 1800
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)?russing furtiler c(1 siderel Vlic fixed time) rendezvo'ous bteneihoriii- circulnr
orbits, lie foundj~ tilat thjese r-cnclezvous(!s ayrequire foul- n)uls~.Ce.s, tilr-e. impl*.,es,

With initi al of finll1 coast periods; :hrce fimlpilse's, two jimpillses witlh an initial oi- finll1

coast. periodl andI two impulses, There is Aiso a chass of singulair cases correspondiiig

to the coplanar singular case which many hanve an, distribution of fimpulses and coasts.

His results show that thic structure of thec mininium fuel rendezvous solutioens inl Ovenl

this simple caIse is very Complex. Thec extensions of this wvork to Some ;Specin; three-

dimensional enses by TBreakwell and by Marec show thant the cxtrai dimension adids pro-

protoionlly to the complexity of the solutions.
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GIIAP']: 9: OP'TJ"MUM \1 jPtULS1, TI'RNSPER IN AN INVEr'SE SQUARE MIELD

9. 1 ime(, Open TrnfrletV.'cen Coplanar, Coaia,,l Ellipses

There are four differenit classos of coplanar, cornxial transfer prolems do-

pending" Upon whethor the ellipses intersect or no'- and upon whether the aponpsis of

thle ellipses point in the same or opposite directions. If thc orbits intersect, then

tile optimullm transfer is alwa'ys a HFlhmaIn transfer fromn the highest apsis to the

opposite Ipsis. For the intersecting orbit case one imipulse. will alasbe an ac-

celerating impulse anld the othecr impulse will IIN\",ys be a (elraiDimpulse. The

primer vcctor solutin corresponding to this transfcr is the solution corresponding

to the Lagrange multiplier for the- eccentricity in Chanpter G. These two-inmpulsc

tranISfers Must be com'1pared with , transfer that goes out to infinity and comcs back

aigain. If the axes arc aligned, then the optimum transfer v~ia iniiy will Ibe via.

twvo parabolas which ar c tangent to the periapses of the two ellipses. Transfer from

the first to the second parabola is via an infinitessimial impul,-e at jinfinity. If the

orbits are not aligned, the sn-me two transfer parabolas to infinity airc used but these

parabolas must bc connected by an elliptic orbit at infinity. 110archal ha s jiven a

number of results which indicate whether the optimal transfer is a two impulse trans-

fer or via infinity.

If the orbits arc non-intersecting and the axes are aligned, the optimal two-

impulse transfer is again from the highest apsis to the opposite apsis of the second

ellipse. If the orbits arc non-intersecting and the apses are opposed, thlen tile Hlunhann

transfer from either aipsis of the outer orb~it must be considered to dectermiine the true
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optimum two-impulse transfer. The primcr vector solution corresponding to the non-

intersecting case has both impulses either accelerating or decelerating the velocity

and has a primcr vector solution corresponding to the Lagrange multiplier for the semi-

minor axis. Once again there is a three impulse transfer via infinity (the hi-elliptic

transfer) if the axes are aligned, and a four impulse transfer via infinity if the axes

are not aligned. For the aligned case, the optimal transfer is ilways through infinity

if the ratio of the two periaipsis radii is greater than 11. 938 and is always two impulse

1Iolun9nn if the ratio of these periapsis radii is less than nine.

9.2 Time Open Transfer Tetween Non-Coplnar Coaxial Ellipses

As for the coplanar case, all of the impulses for coaxial ti-Insfer should be

on the line of apsides (which is also the line of nodes) and should have no radial com-

ponents. In the non-planar case, there is an additional type of transfer possible which

does not occur in the planar case. Namely, a three impulse transfer where the third

impulse is giving at a finite radius. One important class of transfers for which the

finite radius three-impulse transfer is always opthial is for transfer between circular

orbits of the same radiuo for inclination angles between zero and 60. 185 degrees.

Marehal has once again given a number of rules for determining whether the transfer

should be a two impulse transfer, a three impulse transfer with a finite periapsis ra-

dius or a transfer via infinity. For all of the transfer most of the inclination change

is done at the largest apoapsis radius., The other hipulses always lie within about

six degrees of the orbit plane of the initial and final ellipse. The optimum inclination

change for each of the impulses can readily be determined either from the primer vector

solution or from an analysis by Sun which reduces the problem to the well known spidcer

fly problem.
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9. 'I meOpn Ta n:;fcr lietw\\'Cll Coplanar 1:11 11-95(2

'rime opvn tra-nsfer botwccn coplanmir but non-coazxial ellipses fall into three

diff-rent. categories. TIwo impiulse tritnsfe..rs, threo, impulse transfcrs with all im-

p)ulses occurring at finite radii, find transfers via infinity Thc three impulse trans-

fers occur rarely aind only for highly eccentric initial and final ellipses over a small1

range of' orientation angles. Tetwo impulse transfers arc of' two different fanMlies.

Onc family ha's both impulses either increasing or decrea-sing thoecnergy. For Lhis

faiybothl impulses occur onl onc sidc of thle major axis of the transfer ellipse. The~

limlitingr mellbers of this family are the lJohm ann transfer whose primer vector solu-

tion correspondCs to (he J.Lgrang-e multiplier for the semni-minor axis and which has i

transfer ingle of 1,8 0 0; and the primer vector solution correcsponding- to the Lawde n

spira-l wvhich has a transfer angle of 0 0. TJhc other famifly of two impulse transfers

has one impulse being anl accelloratjng1 impulse aInd the. other im1pulse being. a deceler-

atn mule o ti aiy, the two impuhs'es lie on the opposite sides of the

seimjor aixis of the transfer ellipse an1d the transfer angle1 is alwa-ys inl the vicinity

of 180o. Trho limiting moml.ors of this faminly of two impulse transfers are there

verse Ilhm ann transfer corre spondiing to the Laigrange multiplier for eccentricity

and the symmetric transfer corresponding to thle Lagrange nmultiplier for changing

the argUment of perigee.

At )ver point onl the ellipse there is only a small range of nlsibewn

the local horizontal -and thle local direction of' thle velocity vector in which impulses

may be directed for anl optimal transfer. Th'le limiting valucs of this sot are deter-
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mie y thie m1C.nnbers of, thle twyo different famileS of two impulse transfers mclntio-ied

in the List pvgah.A sigle imipulse, transfer from the initlil ellipse or onto the

final ell ipse Juvon the trainsfer ellipse must lio within this range I of useful angles. For

all eccentricities bolowv n criticail eccentricityv of 0.0925 there is a positive range or

useful anlgles at every point onl the ellipse. Above this critica cccentricity, there is

ai range of positions between periapsis anid the( semi-inor aixis for- which there is no0

positive range of ulseful Iligles and vJhich cannot be employed ill optimal transfer.

Above this critical eccentricity it is possible to hazve transfers between the two differ-

ent famlilies- of two impulse transfers so that infi nites simll flwhre impulse trallsfers ill

thle vicinity of these igh-Oly eccentric ellipses becomec possible. At an eccentiricity of

unit, the range of forbidden positions where no optinl imp,.ilse may be ap~plicd extend';

aill the way [ron periapsis to the semi-mninor axis.

9. 4 Time Open Transfer Detween a.n Ellipse and a lye1 o

This is, one transfer probleml Which is completely solved in the time open case.

Unfortunately the optimal solution requires infinite time. Th-is optimal solution is

useful for generating the optimal finite time transfer for long transfer times by iimeans

of a perturb~ation analysis. The optim-umn time open transfer reqluires five impulses.

The first impulse is a tangential impulse at the periapsis of the initial ellipse Which

puts the v'elicle onto an escape parabola. The second impulse is an infinitessimal im-

pulse at infinity Onl thle escape Parabola and it transfers the vehicle onto an ellipse at

infinity which transfers the vehicle to a different posit~ion oil thle celestial sphere. The

third impulse is an infinitessimal impulse at infinity and it transfers the vehicle back



onto a1 %\IIbo (. which lvi11:1h7ve Its perj apsis ra.'dius.C at1 thle mIinlimluml allowable radius

&cllnned by the plleiyrdtsand atmosphere. At the periapsis of the s'econd

parabola, a second finite imlpulse' is app]lied [:Ingenitia] ly to tranlskFer the vehIicle onto

an escape hyperbol havinp, the propme eNnergy and. the proper dlirection of the(, asyip -

totie velocity' vecor.Th fifth and1( finll1 imlWSe is anl iiifinitc-ssim) al imp)ulse aIt in -

funity onl thoe senpo.y(T~ to prochie the corr'c~t ang lnoilentui vector. for

this ]iyperbola,

9.5 T.'ime Open T.1ransfer iTht(ween TYwo Tlvperhol as

The opchi1mum1 tine openl transfer' between two hyperbolas is completoly solved

onl1y in the Ca" se where the radiuls of the aIttracting body is Zero So that iml-pulses mlay

be applied :It the cetrof' attraction. in) tllil ''asc the optimal transfer is a six Jill-

pullse traInsfer. where a11 ll th impulses are.- of infinlitessimal magifflde and the trans-

for tlime is infinlite. For the ea-se where there JS aInImu allown'ble radius, the

transfer problem becomes qulite Compl icated. By applying infinitessiml impulses

ait. infinlity theprblemn is redlucd to the problem of transfer between two asymiptotic

velocity vetr. aIh otll transfer nan"lisi the plane of these two velocity

vectors. This problem has been partiailly solved by Marchal in somec recent papers.

For some wises thie optimal Iransfer requires four impulses and the use of ain inter-

mediate ellipse at infinlity. This tylpe of transfer reqires the spending ofan infinite

amoun11t, of time1 inl the vicinlity of the lplanct. The otaer optimal trannsfers on~ly require

spending a1 finlitc time inl the vicinity of the planet :nd involve energies which are al-

ways above the parabolic vnergy level.
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'When the transfer is not mado through the parabolic level, there arc never

more than two finite impulscs. If there is more than one finite impulse, at least

one of these impulses always occurs at infinity. The other impulse will gcnernlly

occur somewhat above the minimmu allowable radius. It will only occur at the mini-

mum allowable radius if a transfer between the two asymptotic velocity vectors may

be made by means of a tangential impulse at the minimum allowable radius. If this

is not the case, the impulse at a finite radius will not be tangential. The transfer

hyperbolas may or may not descend to the minimum allowable radius.

9.6 Coplanar Time-Open Angle-Open.Transfcr

This is one transfer which has been completely solved analytically for the

two impulse case. The problem is stated as optimal two impulse transfer between

two different radii and between fixed radial and circumferential components of ini-

tial and final velocity. It may be looked upon as transfer between specified locations

on initial and final orbits with the argument of periapsis of the orbits being left open.

This solution is useful for re-entry and for ascent trajectories and has guidance ap-

plications since it can be written down in closed form. In geneural these transfers can

be improved by adding an extra degree of freedom and not specifying the points of ar-

rival and departure on the terminal orbits. In this latter case, the optimal orientation

is always coaxial with the periapsis pointing in the same direction.

9. 7 Time Open Transfer Between Fixed End Points

The problem of time-open two-impulse transfer between fixed positions on

fixed initial and final orbits has been considered by a number of authors. The solution
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has been reduced to finding the roots of ain eighth degree polynomial. It has'been

shown that for some initial and final positions on elliptic orbits, the optima] two

impulse transfer may involve a hyperbolic intermediate orbit. In this case, as well

Las in some other cases, the fuel consumption of the two impulse transfer may be re-

duced by going to a transfer through ifinity. If the constraints that a finite impulse

must be applied at the specified initial and final positions is dropped, then, by allow-

ing coasting in the initial ,,nd final orbits, this problem may be reduced to the problem

of optimal tr.,nsfer between specificd initial and final orbits. The problem with speci-

fied positions does have some application to ascent and descent trajectories where

there may be a minimum allowable radius.

9.8 Time Fixed Transfer

Very little has been done on the problem of time fixed transfer and rendez-

vous. The work that has been done has shown that the problem is one of considerable

complexity. The work with neighboring orbits has shown that the optimal transfer may

involve up to six impulses. The work with singular arcs has shown that in the time

fixed case there may exist optimal coplanar singuLlar ares so that singular ares as

well as a large number of impulses must I)e considered in finding the minimizing ex-

tremal for these transfers. The major contribution has been an iterative technique

which allows the determination of an optimal n-impulse transfer from the non-optimal

two-impulse transfer between the initial and final positions. However, this method

is only a method for (hopefully) finding a locally minimizing solution. In general it

will not be known if there are other n-impulse transfers or if there are other trans-
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fcrs Wvhich onny involve one or more singular arcs. This problem is a fruitful area

for future research.
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CHIAPTER 1-0: SINGULAR ARCS

10. 1 Necessary and Sufficient Conditions for Sinulm: A rcs.

For optimal rocket trajectories wVit~h conlsta nt exhaust. vcl ocitY, a

phenomnon01 knlown as a sinll"ar airc may occur. A sigular arc occurs when thec

coefficient of' the thrust. acceleration inl the lamiltoniani remains identically zero

over a finite thrust. arc for a ffinite time. In these cases, thle optimum magitfude

of the thrust acceleration canl not be determined from- the Ilamiltoilian. Iniposing

thle condition that. the coefficient of the thruist, acceleration in the fHam-iltonian re-

mains identically zero will aillow the derivation of a magnitude for thc thrust tic-

celoration at each Point Oil a singular are. For the case where the th-rust accel.-

eration may bccomce unbounded, this will corresp~ond to thle miagnitude ofl the primer

vector , bignty along such ain arc. Considerable information about such -,rcs may

be determined by taking the successive derivatives of' the magitiude of the primer

v'ector, all of wvhich will be zero. 1If the optimlal thrust, magnitudeI is bounded then

the mlagniitude of the p~rimer vector will be constant onl a singula ai rc. As has been

pointed out earlier, for linear problems singular arcs correspond to nonunique

soluiffons with undefined acceleration magnitudes. However, for thle nonlinear prolb-

1cm the acceleration mlagn-itude onl the singular arcs becomeni well definied. Such ares

mal~y be candidates for portions or all of a minimizing extremal.

The literature on the classical calcuilus of variations provides very

little informiation Onl singulair arcs. In recent y'ears the discovery tlhat singular arcs
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Illay occur in mlinimlizing .oliills has lead 1o renewed iiitorest in this problem. nhis

reent work has culminated in neccessary and sufficient conditions for singular arcs

althoug-1 he probleml of Coupling singuilar cxtrcmials to nonsingular extremals is still

not inl a sst-isfactorN. state. The first of the new necessary conditions was generalized

oi transformation of tile L.ogcndre- Clebshi Coldiio I 0of 0"0c ca-lIuluIII or \ari -1 "ilsa The

extension wa-s carried oiut by a numiber of investigators including Kelley, rait, Robbills,

Gurley, Goh, and pec.An -iddifional. necessary condition for sfi-ffl:,-r qrcs wsthen

developed by Jaicobson. More recently necessary and sufficient conditions have been

Obtained by JaIcobson, SpeC.N' anld Jacobson, and MVIcl)\'!]Il and P~owers. /These Condi-

tions aillow the testing of a singuilatr are for local opM1:1iity.

10. 2 Junction Conditions

Keley, Kopp ind Moyer have shown that optimial junctions between

singular and nonsingular arcs canl be very complex. For example, they have shown

that for the rocket problem wvith a bound onl the thrust mazgnitude, ain optimal junction

between a singular and a.n arc of maximum thrust must involve a well-defined infinite

sequence of switchies between maximum thrust and zero thrust. This infinite sequence

of switches takes place in a finite limle. However, if impulses -arc allowved, it is ap qr-

ently possible to have a simple junction between a sigular arc and ain impulsive thrust.

Not much work has been done on this problein and it remains as a topic for future

investigation.

10. 3 Singuilar Ar'cs for an Inversec Square Field,.

One of Lawden's miany contribuitions to spaice trajectory optimizaifon

was his treatment of the coplanar singuilar arcs, and his analytical inferato ofth

137



time-open arc wich has become known :as [he Lawden spiral. The gencralized Legendre-

Clcbsh condition was subscquenlily applied to these arcs by Robbins slnd by Kopp and Moyer

to yield the result that the optimal thrust direction Must Point inl toward the center of at-

traction and that thc squiare of the sign of the an'gle withi the horizontal must be less than

or equal to 1 /3, This result ruics o'it fihe LaIwden spiral as on this singular arc the

thrust always has a radial componient directed away from the center of attraction. This

is a v'ery important. result as it indicates thiat for thc tim-e-opcni coplanar problem the

minimizing solution canl never have a singular arc, llowever, Robbins has shown that

for the timei-fixed caIse a Significant protion of the phase space is filled by sin-gulair arcs

which do saitisfy, the general iz.Cd Legrendcl-C-Clebsh1 condition, Anmonty these singular arcs

is one considered b)y Friacijs dc Velb eke wvhichi corresponds to thie fixed-timei aIngle open

case. This particular are canl be integrated analytically as can the Lawden spiral an(] a

portion (if this are is minimizing.. Robbins uses anl argument s"Iiilr to anl arg0umenI-t inl

the classical calculuis of Va~riations to show that sufficiently short segrments of singupizor

arcs satisfying the gcerali zed Loendre-Clebshi condi ti on are locally minimizing. With

the development of the'new sufficiency conditions for singular arcs, this argument is no

longer nccssmar'. and it remains as a topic for future investigation to apply the additional

necessary and sufficiency conditions to the singulair arcs of an inv'erse sqvvare field. Ani-

other problem for future investigalion is the determinal"tionl of composite extreernals in ana

inverse square field inllOving~ both s-inlglar and nlonsingular arcs.

The caise of singul ar arcs in three dimensions has been trented by'

Christiain M archal . Two of his co-workers, Cont.ensou and Tl arec, have also consid-

ered an1 acadlmi(ic type of sinlgularIl a-c. Which myoccur inl the timeIC-open' case. This
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pcculiar type of Oxtvcnm1a involves npplying i finite acceleration for in inlinitisimal time
" , 10

and then coasting through an angle of 3600 before applying another inminitisimal pulse.

These arcs do not appear to be of much interest because of their somewhat esoteric

nature and partially because they appear to be nonminimizing.
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CIIAPTElR 11: INTERBPLANETARY TRAJECTORIES

11. 1 Impulsive 'ra iect~orics

The problem of calculating optimum trajectories from one planet to another

is an n-body problem. For preliminary analysis this n-body problem can be

simplified by considering only the attraction of the sun and of those celestial bodies

to which the space craft makes a close appro,.ch including the launch and the arri-

val planets. Iawden has made an approximtc analysis of this n-body problem by

utilizing what is essentially a low order matched asymptolic expansion. This type

of analysis has been widely used for mission planning purposes and has been found

to be sufficiently accurate for preliminary design purposes. In this analysis the

radii of the spheres of influence of the plancts are neglected. The trajectory from

one planet to another is calculated as a heliocentric two body trajectory from the

position of the first planet to the position of the second planet. The relative veloci-

ties of arrival and departure are then regarded as the asymptotic velocities on two

body approach and departure hNpcrbolas relative to the plancts. The time from one

planet to another is based only upon the heliocentric two body tra.sfe . The time

inside the planetary spheres of influence is neglected.

A higher order analysis by Perko and Breakwell of the matched asymptotic

expansion shows that the errors in calculating propulsion requirements from this

model are acceptably small.

In calculating the primer vector fo~r this approximate n-body trajectory a

change must be made in the magnitude of the primer vector necessary to trigger an
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impulse at the appro' ch departure, planeis. The primer vcctor on the he liocentric

trajectory is calculatcd in the normal fashion except that its boundnry conditions

are somewhat different. Lawdcn has shown that the magnitude of the primer vector

at the start of the heliocentric arc should bo smaller than unity by the ratio of the

asymptotic velocity on the initial departure hyperbola to the periapsis velocity at

the beginning of this departure hyperbola. A similar condition holds for the arrival

hyperbola. These two conditions define the magnitudc of the primer vector at the

two ends of the heliocentric trajectory. The direction of the primer vector is the

sam1e as the direction of the relative velocity vector to the plancts. The primer

vector on the escape hyperbola h::ts the solution corresponding to the Lagrange multi-

plier for changing the semi-major axis or the energy of the hyperbola. The primer

vector is coincident with the direction of the velocity vector and its magnitude is

proportional to the magnitude of the velocity vector.

The analysis of the heliocentric trajectory is conducted exactly as the analysis

of the normal t-vo-body orbit except for the changed condition on the critical magnitude

of the primer vector at the launch and arrival planets. For an intermediate impulse

given in heliocentric space the magnitude of the primer vector must again have a

stationary maximum of unity.

Two impulse transfers from one planet to another are readily calculated by

solving Lambert's problem for given launch and arrival dates. If contours of constant

total delta v are plotted as a function of the launch and arrival dates the well known

"pork-chop" curves are obtained. These trajectories may readily be checked for
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lova optimality by calculating the necessary conditions on the primer vector along

the tr'!ijctory. During any single opposition only portions of the two impulse "pork-

chop" curves will represent optimal transfers. In many eases it will be necessary

to go to an ad(hitional mid course impulse or to initial or final coasting per'iods in

order to have an optimal transfer from one planet to another. For some planets

such as Mars or Venus the optimal transfer during any given opposition (the trans-

fer requiring the lowest total delta v for any launch and arrival dates during the

opposition) will be a two impulse transfcr. For other planets such as Mercury an

optimum rendezvous will generally require three impulses. An approximate first

order theory of the optimum tr,'nsfer to any planet during any opposition has been

given by M'archal. Numerical calculations indicate that this first order theory is

sufficient to be used to dtermine initial conditions for numerical processes to find

the true optimum but is not sufficiently accurate to be a good approximation to the

true non-linear minimum. Numerical calculations of optimum multiple impulse

transfer from the earth to other planets have been carried out by Lion, Doll and

Gobotz. These ,.alculations show that mid course burns can be zt ed to open up

launch windowrs, and for planets such as Mercury to significantly reduce the delta v

required for rendezvous missions.

11. 2 Power Limited Trajectories

Many calculations have been made of optimum low thrust trajectories between

various planets. These optimum trajectories must at the present time be found by

numerical methods as none of the approximate analytic theories have proven suffi-

ciently accurate. Several fairly efficient numerical techniques have been developed
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and such trajectories can l)e ronitinely caculaLed for arbitrary launch and arrival

dates. These trajectories haive ben calcul:ted for various assumptions, includin.

constant power, constant thruSt, constant acceleration, constant specific impulse

and either solar electric or mclear electric power supplies. The ty-pical practice

is to reduce the n-body problem to an approximate sequence of two body problems

as is done for the impulsive case. An approximate theory of the influence of the

departure planet's gravity on the holiocentric dcpartmue trajectory has been

developed by Mclbournc and by Edelbaum by usjing a low order matched asymptotic

expansion. This analysis shows that a correction to the heliocentric trajectory due

to the planeocentric gravity field is necessary, particularly for the larger planets.

The treatment of lhe plancocentric phases depends on wheth;er the energy to escape

from the planet is provided by a high thrust or a low thrust propulsion system. For

the case where the space craft spirals away from the planet under low thrust propul-

sion, the time spent during this escape maneuver must be considered. A refined

analysis of this problem has been developed by Brcakwcll and Rauch. For the carly

electric propulsion systems it is generally more desirablc to use high thrust systems

to provide the planetary escape and capture propulsion. In these cases the afore-

mentioned analysis of Melbourne ind Edelbaum should be utilized. If curves of

constant fuel consumption are plotted against launch and arrival dates some similari-

ties arc obtained with the corresponding results [or high thrust propulsion. One

difference is that in a low thrust case the fuel consumption generally decreases

monotonically with the total transfer time. lowever, for any given transfer time,

there is an optimum launch date and the optimum launch dates for low thrust
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Jpropulsion) tendj l.0 be clo03e to thlose for high thrust propulsion with ab~out. thei s.1rmc

transfer times..

In onc of Lawden's early l-,ipershc considered was referred to as a perturba-

tional. mancuvcr, where a space craft on its way to Mars would swing by the moon in

order to pick tip some additionaldeta. for free, from tho 30oon's gravitational

field. Tic0 found that thc delta v that could be added by tbe moon was not very large

and this idea was neglected for about 10 years. Even then, the idea was not a new

one, as it hand long bcen knowni that Jupiter couldI changre the energy el comets and

cause them to escape purnianently fromi the solnr systemi. In the early GO's it was

discovered tha-t for round trip missions to the near planets it was often desirable

to use rswinigbvs of \'cnu,! ; enl route to MaI~rs or vice versa. It was also discovered that

the enlormous gravitational field of Julpiter could be .Avantageouisly used to perform

various missions throughout the solar systiim including the grand tour missions,

close solar probes, andl probes fir out of the ecliptic plane. The analysis of opti-

mum1- swilngby missions falls wihntic, gneral. theory of optimal rocket trajectories

treated in this mono-grnih The analysis is conducted by using mantched nz&ymptotic

ceqpans ioils a s was the C.1re with planetary escape and arrival trajectories. The

analysis of optimal swiiigby missions can be carried out bothi for high thrust systems

and low thrust power limited rocket systems. The effect of' the swingby is to cause

a discontinuous chiange in the direction of the primer vector at the swingby timei at

the two ends of the hecliocentric approach and departure trajectories from the planet.
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The angle that the primer vector rotates through is the samc as the anglo thro11h

which the hyperbola relative to the planet rotaties its asymptotic velocity vectors.

It is possible to treat both powered and unpowered swingby missions in this fashion.

During a powered swingby mission an impulse is applied at a point close to the

planet. For the powered swingby missions with high thrust it is possible to use

the analysis of transfer between hyperbolic asymptotes treated in the chapter on

inverse square force fields. The analysis of low thrust trajectorJes during

swingbys is very similar to the analysis of low thrust trajectories during the

approach and departure phases from the terminal plaiets.
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CIAPTEI 12: COMBINATION PlROPULSION

12. 1 Field Free Space

E:Arly work oin low thrust propulsion systems assumned that the low thrust

system would be placed into orbit by a high thrust system and that all subsequent

propulsion would be provided by the low thrust system. Later work on the utili-

zation of low thrust propulsion systems indicated that it was often desirable to

utilize high thrust in conjunction with low thrust for additional mission phases. It

has been found that combinations of high thrust and low thrusi: propulsion systems

can oflen provide better performance, than either system when used alone. The

simplest such missions to analyse are missions in field free spate. The simplest

or the field free space missions is the problem of changing only velocity. For this

mission the payload with pure high thrust is independent of the mission duration

while the payload with pure low thrust increases monotonically with mission dura-

tion. For mission times in the vicinity of the time for which the low thrust and the

high thrust system have the same payload, thc combination of both1i propulsion sys-

tems will provide higher payloads.

The opt nurn combination load may be described as follows: a high thrust

impulse is first used to accelerate the vehicle to some fraction of the final desired

velocity. Then the low thrust engine is turned on and operates until a later time

when the power supply is dropped. After the power supply is dropped, a second

high thrust impulse accelerates only the payload to the final velocity. For this mode
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of operation, the payload is independcnt of the split betcen the initial and final im-

pulses. It is possible to provide all of the high thlrust impulse initially and then con-.

tinue with low thrust so that the power supply is retained at the end of the mission.

Alternately, the low thrust may be used first after which the power supply is dropped

and all the high thrust is used at the end. This is a special result which only applies

to this particulr mission. For this case where the primer vector is constant in magj

nitude the benefits of combination propulsion are only significant when the payload is

quite small.

A second interesting mission in field free space is a transfer between two po-

sitions of rest in field free space. Such a transfer may be considered as an approxi.-

mation to a fast transfer to the outer planets with a nuclear electric propulsion system.

The velocities required for fast transfers in this case arc so high that the influence of

gravitational fields and terminal velocities may be neglected. The optimum mode

with pure high thrust is to provide an initial impulse, coast for a given time and then

decelerate at the target position back to zero velocity with a second impulse. In this
I

case the high thrust payload is a function of the flight time and increases monotonically

with the flight time as does the low thrust payload. For short transfer times the pay-

load with the high thrust system will be larger than the payload of the low thrust sys-

tems while for long transfer times the payload with the low thrust system will be larg-

er. Once again combination propulsion is advantageous in the region where both sys-

tems have about the same performance. The combination mode for this mission is to

first provide an initial velocity impulse , and then turn on the low thri:st which has an

acceleration magnitude that decreases linearly with time. The acceleration magnitude
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paisses through zero and then increases to its initial acceleration magnitude. A sec-

ond and equal high thrust impulse is then provided aftcr the power supply has been

dropped. Once again the combination propulsion system can provide appreciable

payload increnses where the payload of cither system alone is quite small and about

equal to the payload of the other syslcm.

12._2 1 iversc S(fl:lnre Force Flclds

In more complicated gravitational fields such as inverse square fields the

difference betveen the maximum and the average values of the primer vector along

the optimumn trajectory maiybe much grenter than for the cases in field free space.

By titilizing high thrust systems in those regions where the primer vector has its

maximum values, much greater boneits from combination operation are possible

than for the nmissions in field free space. If the inverse square field is a strong field

then 1he analysis of Chapter 7 may be used for the low thrust phases of the mission.

The high thrust phases may use the analysis in Chapter 9. Since the high thrust will

be used impuisively the low thrust system mnay be assumed to be on all the time except

possibly at the final. impulso before which the power supply will be dropped. If there

is more than one high thrust impulse it might be advantageous to drop porticns of the

low thrust power supply during the mission. This will also be true if the payload for

the low thrust portion of the system becomes very small so that optimal staging of

the low thrust power supply becomes desirable. The optimal mission modes in inverse

square fields become very complicated and in different regions different combinations

and sequences of low thrust and high thrast become optimal. It is necessary to assume

different modes and check the local optimal ity by calculating the primer vector in order

148



to determine the local optimia. These local optima must then be compared by deter-

mining which of the different modes tends to lead to the absolute minimum. The mis-

sion that has been analysed in most detail is escape from an inverse square field with

a given hyperbolic velocity. The optiLmum mode for this mission has generally becn

found to be an initial period of low thrust which increa, :cs the semi-major axis of the

initial circular orbit and also increases the eccentricity. At the end of the first low

thrust phase the vehicle will be in an elliptic orbit, usually wIth a minimal allowable

periapsis radius and a fairly high apoopsis radius. At this point a high thrust impulse

is applied at periapsis to accelerate the vehicle beyond escape energy. A second pe-

riod of low thrust may then be used if the final desired hyperbolic velocity is fairly

large.

For transfer between co-planer, co-axial elipses the optimum mode may re-

quire from zero to tvo initial impulses. A second impulse, if it occurs, being given

at the second apsis of the first transfer clipse. And there may also be from zero to

tro terminal impulses. Usually, there will be no more than two high thrust impulses

in combin, lien with the low thrust system, although, occasionally three impu!ses may

be required. For the cases with two high thiust impulses, both impulses might occur

at the beginning, one may occur at the beginning and one at the end, or both impulses

may occur at the end depending upon the particular initial and final orbits.
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PflOBLE 1,S

1. A body moves fin a ccnitrai force field where the force is directed towards
thc Originl and 1s proportionail to the distance from the origin. What shape
does ain unpowe.,rcf orbit have in suich a force field? H-ow many periapses
and aponpsidecs ire there in oflO revolution? What is the period of the orbit?
(Rectanguilar coordinates are suiggested for this and the followving twolprob-
]cmls.)

.Assumie that, thc! optilmm im-pulsive Itransfer betweecn a circular orbit and
a1 c oplana1"r eloti rbit, iN tho above fore field reuiires two tangrentil
impulse,, at. tile \\ills iVht is the iiiiinium A V required for transfer
from a circular to anl elliptic orbit? Docs the transfer to the apoapsis or
to the periapmj,,s require es fuel? Both the periapsis and the apoapsiE of
the ellipse ba e either lairger or smaller than the radius of the circular
orbit.

3. Derive the optimumi thrwst program for a power-imited v'ehicle in the
linear central force field of Problem 1. Express fis program inl terms
of the initial vziiucs ofS the Lagrange multipliers and the time by inte~grating
the Eulor-Lag-range cqiia U ens.

4. A }iowr-limiled vehicle if, moving along the x axis towards the y axis inl
field-free space. What is the mlinjimum J to transfer froml- velocity uo and
position X0 to a final velocity vj directed along the y axis in the timle t I
What is the Optimum value of y at t, for this J? What is the optimum value
ofx X?

5. Synethosize the optimal control for t~ransfer from any state to the final
state of Problem 4.
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